Corrected adsorption rate model of activated carbon–ethanol pair by means of CFD simulation

Skander Jribi, Takahiko Miyazaki, Bidyut Baran Saha, Shigeru Koyama, Shinnosuke Maeda, Tomohiro Maruyama

    Research output: Contribution to journalArticlepeer-review

    18 Citations (Scopus)


    The adsorption rate is an important parameter for accurate performance estimation of adsorbent-refrigerant based adsorption cooling cycles. Here, we have investigated the response of two adsorption kinetics models of activated carbon–ethanol pair by means of CFD simulation. The isothermal assumption used in estimating the diffusion time constant of Fickian diffusion and linear driving force (LDF) models led to divergence and under-estimated adsorption uptakes, respectively. By including the simulated adsorbent temperature profile in fitting of LDF model to experimental data, we assessed the non-isothermal diffusion time constants which were 2.5 to 5 times higher than those evaluated previously with isothermal assumption. The goodness of fitting, evaluated with coefficient of determination (R2), improved and became higher than 0.95 from 0.73 initially. The developed non-isothermal LDF equation allows accurate heat and mass transfer simulations and performance optimization of large scale adsorption/desorption bed employing activated carbon-ethanol pair for adsorption cooling applications.

    Original languageEnglish
    Pages (from-to)60-68
    Number of pages9
    JournalInternational Journal of Refrigeration
    Publication statusPublished - Nov 1 2016

    All Science Journal Classification (ASJC) codes

    • Building and Construction
    • Mechanical Engineering


    Dive into the research topics of 'Corrected adsorption rate model of activated carbon–ethanol pair by means of CFD simulation'. Together they form a unique fingerprint.

    Cite this