Mitigating Defect States of All-Inorganic CsPbI2Br Perovskite via Multifunctional 2-Amino-5-Nitrothiazole Additive for an Efficient Air-Processed Outdoor/Indoor Photovoltaics

Jitendra Bahadur, Sung Won Cho, Padmini Pandey, Saemon Yoon, Dong Gun Lee, Jun Ryu, Jun Tae Song, Jongchul Lim, Dong Won Kang

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

All-inorganic CsPbI2Br mixed halide perovskites show promise as wide-bandgap photoabsorbers in photovoltaics. However, the rapid crystal growth observed in solution-processed CsPbI2Br often leads to morphologies plagued by pinholes and defects, which limit device performance. This study introduces 2-Amino-5-nitrothiazole (ANT), an innovative precursor additive, to enhance film quality. ANT's selective interactions with the perovskite precursor moderate the crystal growth, resulting in a dense, flawless CsPbI2Br film characterized by superior crystallinity and coverage. Furthermore, the -NH2 group in ANT coordinates with Pb octahedra, effectively mitigating charge defects through NH=I/Br bonds. Simultaneously, S=C-N sites interact with uncoordinated Pb2+ ions, reducing defect states and nonradiative recombination. This innovation achieves an impressive device efficiency of 17.13% with a fill factor (FF) of 83.41%, surpassing the control's efficiency of 15.21% (FF of 80.45%). Notably, the champion device maintains an efficiency of 29.47% under indoor light-emitting diode lighting at 1000 lux. Additionally, the optimized perovskite solar cell demonstrates remarkable stability, retaining ≈90% of its efficiency for over 720 h at 85 °C in air, even without encapsulation.

Original languageEnglish
Article number2300912
JournalSolar RRL
Volume8
Issue number5
DOIs
Publication statusPublished - Mar 2024

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Mitigating Defect States of All-Inorganic CsPbI2Br Perovskite via Multifunctional 2-Amino-5-Nitrothiazole Additive for an Efficient Air-Processed Outdoor/Indoor Photovoltaics'. Together they form a unique fingerprint.

Cite this