Microstructure and creep property in polycrystalline Ni-based alloy with intergranular intermetallics

Takanori Ito, Shigeto Yamasaki, Masatoshi Mitsuhara, Hideharu Nakashima, Minoru Nishida, Mitsuharu Yonemura

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Creep properties and microstructures for a polycrystalline Ni-based heat-resistant alloy whose grain boundaries were covered by dense intergranular intermetallics were investigated. Creep tests were carries out at 850°C and 80-130 MPa. The creep strength of this alloy was higher than the Alloy617 and HR6W, and equal to the Alloy740, which are pre-existing candidate materials for steam pipes of A-USC power plant. The retardation of acceleration of creep rate was observed characteristically in the creep curves. This retardation behavior was deeply related to the superior creep strength of this alloy. The spherical Ni3Al (γ') particles were distributed uniformly in the grain interior, whose coarsening behavior was monotonically dependent on the creep time. The intermetallics of Laves phase and s pahse were formed densely at grain boundary. High coverage ratio of the intergranular intermetallics was maintained until the later stage of acceleration creep region. Therefore, it suggested that the retardation of creep acceleration was not caused by the precipitates behavior of intragranular γ' particles and intergranular intermetallics, though both the precipitates were understandably effective against the creep strengthening. The plate-like Laves phase was formed in the grain interior during creep. The evolution of volume fraction of intragranular Laves phase depended on not creep time but creep strain. From the results of SEM/EBSD analyses and TEM observations, it revealed that the intragranular Laves phase enhanced the work-hardenability due to the constraint on plasticity and originated the retardation of creep acceleration.

Original languageEnglish
Pages (from-to)434-442
Number of pages9
JournalTetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
Volume103
Issue number7
DOIs
Publication statusPublished - 2017

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Microstructure and creep property in polycrystalline Ni-based alloy with intergranular intermetallics'. Together they form a unique fingerprint.

Cite this