Abstract
Microstructural control of SnO2 thin films was attempted by introducing various amounts of polyethylene glycol (PEG) into an aqueous sol of SnO2 to be spin-coated. As measured for the powder samples derived from the sols, the addition of PEG cut the specific surface area of SnO 2 almost in half, while keeping the crystallite size almost unchanged. Pore size distribution analysis revealed that the average pore diameter was about 6 nm for the powder derived from the neat SnO2 sol, while it was enlarged to about 20 nm by the addition of PEG1000 by 18 wt%. SEM observation of spin-coated thin films revealed that morphology changed from a dense packing of very fine particles to a more porous packing of larger particles with the addition of PEG1000 or PEG6000. The thickness of spin-coated film could be increased by increasing amount of PEG1000 or PEG6000 added. The sensor response of these films to H2 gas increased with increasing film thickness. This tendency is considered to result because the porous structure of the film becomes better developed as the amount of PEG increases.
Original language | English |
---|---|
Pages (from-to) | 477-482 |
Number of pages | 6 |
Journal | Ceramic Engineering and Science Proceedings |
Volume | 25 |
Issue number | 3 |
Publication status | Published - 2004 |
Event | 28th International Conference on Advanced Ceramics and Composites - Cocoa Beach, FL, United States Duration: Jan 25 2004 → Jan 30 2004 |
All Science Journal Classification (ASJC) codes
- Ceramics and Composites
- Materials Chemistry