Microscopic slickenside as a record of weak shock metamorphism in the surface layer of asteroid Ryugu

Masaaki Miyahara, Takaaki Noguchi, Toru Matsumoto, Naotaka Tomioka, Akira Miyake, Yohei Igami, Yusuke Seto, Mitsutaka Haruta, Hikaru Saito, Satoshi Hata, Hope A. Ishii, John P. Bradley, Kenta K. Ohtaki, Elena Dobrică, Hugues Leroux, Corentin Le Guillou, Damien Jacob, Francisco de la Peña, Sylvain Laforet, Bahae Eddine MouloudMaya Marinova, Falko Langenhorst, Dennis Harries, Pierre Beck, Thi H.V. Phan, Rolando Rebois, Neyda M. Abreu, Jennifer Gray, Thomas Zega, Pierre M. Zanetta, Michelle S. Thompson, Rhonda Stroud, Kate Burgess, Brittany A. Cymes, John C. Bridges, Leon Hicks, Martin R. Lee, Luke Daly, Phil A. Bland, Michael E. Zolensky, David R. Frank, James Martinez, Akira Tsuchiyama, Masahiro Yasutake, Junya Matsuno, Shota Okumura, Itaru Mitsukawa, Kentaro Uesugi, Masayuki Uesugi, Akihisa Takeuchi, Mingqi Sun, Satomi Enju, Aki Takigawa, Tatsuhiro Michikami, Tomoki Nakamura, Megumi Matsumoto, Yusuke Nakauchi, Masanao Abe, Satoru Nakazawa, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tomohiro Usui, Toru Yada, Hisayoshi Yurimoto, Kazuhide Nagashima, Noriyuki Kawasaki, Naoya Sakamotoa, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Sei ichiro Watanabe, Yuichi Tsuda

Research output: Contribution to journalArticlepeer-review

Abstract

The surface morphology of regolith grains from the C-type asteroid Ryugu was studied in search of evidence of impact events on the asteroid. Scanning electron microscopy revealed that ~8% of C0105-042 Ryugu grains have a smooth surface on one side of the grains. One of these grains has striated linear grooves (striations) on its smooth surface. Transmission electron microscopy of the grain showed that a porous fine-grained Mg-Fe phyllosilicate assemblage, which is the main component of Ryugu grains, is compacted near the smooth surface. The smooth surface with striations closely resembles a slickenside, a characteristic texture found in terrestrial fault rocks formed by shear deformation. There is no evidence of melting/decomposition in the Mg-Fe phyllosilicates near the smooth surface, indicating that the shear heating temperature is less than ~1100 K. Assuming that the average length of the striations corresponds to the minimum displacement of the micro-fault, the shock pressure recorded in the C0105-042 Ryugu grain is estimated to be <~4.5 GPa by a fault mechanics calculation. The shock pressures of C0105-042, together with those of C0014 (~2 GPa) and C0055 (>~3.9 GPa) in previous studies suggest that the impact velocities recorded in these grains are < ~0.89–1.63 km s−1. Based on the impact velocities, these grains may record an impact event that occurred when asteroid Ryugu was in the orbit in Main Belt.

Original languageEnglish
JournalMeteoritics and Planetary Science
DOIs
Publication statusAccepted/In press - 2024

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Microscopic slickenside as a record of weak shock metamorphism in the surface layer of asteroid Ryugu'. Together they form a unique fingerprint.

Cite this