Methane/water adsorption properties of synthetic imogolite nanotubes

Fumihiko Ohashi, Shinji Tomura, Shin Ichiro Wada

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Aluminosilicate nanotubes (imogolite) have been synthesized from highly concentrated inorganic solutions by hydrothermal treatment. These can be converted to microporous nanofibers with a pore radius in the range of 0.3-0.6 nm referring to the results from the nitrogen adsorption isotherm. The water vapor adsorption isotherms indicated that the natural imogolite plotted a proportional isothermal curve where the amount of adsorbed water increased in proportion to P/P0: the maximum amount of adsorbed water was ca. 60 wt%. The synthetic imogolite showed a rapid increase at 0.9-0.95 range of P/P0 and achieved a maximum of ca 80 wt%, with a better methane storage property than that of the usual compressed natural gas storage. In order to obtain a high ratio of water adsorption and a large methane storage capacity, it is necessary to control the micro/meso porous structure and the hydrophilic/hydrophobic surface affinity. It is expected that the synthetic imogolite might become a multipurpose adsorbent.

Original languageEnglish
Title of host publicationSolvothermal Synthesis and Processing of Materials
PublisherMaterials Research Society
Pages63-68
Number of pages6
ISBN (Print)1558998322, 9781558998322
DOIs
Publication statusPublished - 2005
Event2005 MRS Spring Meeting - San Francisco, CA, United States
Duration: Mar 28 2005Apr 1 2005

Publication series

NameMaterials Research Society Symposium Proceedings
Volume878
ISSN (Print)0272-9172

Other

Other2005 MRS Spring Meeting
Country/TerritoryUnited States
CitySan Francisco, CA
Period3/28/054/1/05

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Methane/water adsorption properties of synthetic imogolite nanotubes'. Together they form a unique fingerprint.

Cite this