Mesoscopic Heterogeneity in the Curing Process of an Epoxy-Amine System

Mika Aoki, Atsuomi Shundo, Riichi Kuwahara, Satoru Yamamoto, Keiji Tanaka

    Research output: Contribution to journalArticlepeer-review

    40 Citations (Scopus)

    Abstract

    Epoxy resins are composed of a three-dimensional network formed by chemical reactions between epoxy and amino compounds, which plays an important role in the mechanical properties. Thus, to use epoxy resins in various applications, it is necessary to gain a better understanding of their network structure. Here, we study the structural heterogeneity evolved in an epoxy-amine mixture during the curing process on the basis of a particle tracking technique, in which the thermal motion of probe particles in the mixture was tracked, small-angle X-ray scattering measurements in conjunction with coarse-grained molecular dynamics simulation. The heterogeneous environment was generated even at the initial stage of the curing process. Notably, the characteristic length scale was on the order of several hundreds of nanometers down to several tens of nanometers, depending on the extent of curing. Once a reaction occurs between a pair of epoxy and amino groups, the temperature at the site is locally elevated due to the heat of formation, accelerating a subsequent reaction nearby. Repeating such a situation, actively and scarcely reacted domains are formed. This is the main origin of the structural heterogeneity in epoxy resins.

    Original languageEnglish
    Pages (from-to)2075-2082
    Number of pages8
    JournalMacromolecules
    Volume52
    Issue number5
    DOIs
    Publication statusPublished - Mar 12 2019

    All Science Journal Classification (ASJC) codes

    • Organic Chemistry
    • Polymers and Plastics
    • Inorganic Chemistry
    • Materials Chemistry

    Fingerprint

    Dive into the research topics of 'Mesoscopic Heterogeneity in the Curing Process of an Epoxy-Amine System'. Together they form a unique fingerprint.

    Cite this