Measurement of the microlayer characteristics in the whole range of nucleate boiling for water by laser interferometry

Zhihao Chen, Xiaocheng Hu, Kang Hu, Yoshio Utaka, Shoji Mori

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)

Abstract

During nucleate boiling, a thin liquid film (microlayer) is formed beneath a boiling bubble when the bubble undergoes rapid growth/expansion. The linear distribution of the microlayer has been previously confirmed, and its crest shape has been observed in the isolated bubble region of nucleate boiling. However, the microlayer behavior in larger heat flux regions up to critical heat flux has not yet been elucidated. In this study, to further understand the microlayer structure in the whole heat flux range of nucleate boiling, microlayer configuration was measured using laser interferometry. Water was adopted as the test fluid, and it is confirmed that the microlayer can be observed over a whole range of nucleate boiling containing the critical heat flux point. It is also confirmed that the deformation of the microlayer from axisymmetric shape was caused by complicated, irregular bubble motions such as bubble coalescence, which was observed for relatively higher heat flux. The crest shape of the microlayer, which appears near the periphery of its maximum diameter under relatively smaller heat flux, was not observed at a relatively higher heat flux. Finally, it is confirmed that heat flux does not obviously influence the thickness distribution of the initial microlayer.

Original languageEnglish
Article number118856
JournalInternational Journal of Heat and Mass Transfer
Volume146
DOIs
Publication statusPublished - Jan 2020

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Measurement of the microlayer characteristics in the whole range of nucleate boiling for water by laser interferometry'. Together they form a unique fingerprint.

Cite this