TY - JOUR
T1 - Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki
AU - Horinouchi, Takeshi
AU - Kouyama, Toru
AU - Lee, Yeon Joo
AU - Murakami, Shin ya
AU - Ogohara, Kazunori
AU - Takagi, Masahiro
AU - Imamura, Takeshi
AU - Nakajima, Kensuke
AU - Peralta, Javier
AU - Yamazaki, Atsushi
AU - Yamada, Manabu
AU - Watanabe, Shigeto
N1 - Funding Information:
We thank Drs. Takehiko Sato, Sanjay Limaye, Masato Nakamura, and Hiroki Kashimura for discussion on UVI tracking results. We thank Dr. Igor Khatuntsev and an anonymous reviewer for providing valuable comments that helped improve the manuscript significantly. We also thank the numerous people who contributed to create and operate the Akatsuki spacecraft. This study was partially supported by JSPS KENHI 16H02231 and 16H02225 and JAXA’s ITYF Fellowship.
Publisher Copyright:
© 2018, The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Venus is covered with thick clouds. Ultraviolet (UV) images at 0.3–0.4 microns show detailed cloud features at the cloud-top level at about 70 km, which are created by an unknown UV-absorbing substance. Images acquired in this wavelength range have traditionally been used to measure winds at the cloud top. In this study, we report low-latitude winds obtained from the images taken by the UV imager, UVI, onboard the Akatsuki orbiter from December 2015 to March 2017. UVI provides images with two filters centered at 365 and 283 nm. While the 365-nm images enable continuation of traditional Venus observations, the 283-nm images visualize cloud features at an SO2 absorption band, which is novel. We used a sophisticated automated cloud-tracking method and thorough quality control to estimate winds with high precision. Horizontal winds obtained from the 283-nm images are generally similar to those from the 365-nm images, but in many cases, westward winds from the former are faster than the latter by a few m/s. From previous studies, one can argue that the 283-nm images likely reflect cloud features at higher altitude than the 365-nm images. If this is the case, the superrotation of the Venusian atmosphere generally increases with height at the cloud-top level, where it has been thought to roughly peak. The mean winds obtained from the 365-nm images exhibit local time dependence consistent with known tidal features. Mean zonal winds exhibit asymmetry with respect to the equator in the latter half of the analysis period, significantly at 365 nm and weakly at 283 nm. This contrast indicates that the relative altitude may vary with time and latitude, and so are the observed altitudes. In contrast, mean meridional winds do not exhibit much long-term variability. A previous study suggested that the geographic distribution of temporal mean zonal winds obtained from UV images from the Venus Express orbiter during 2006–2012 can be interpreted as forced by topographically induced stationary gravity waves. However, the geographic distribution of temporal mean zonal winds we obtained is not consistent with that distribution, which suggests that the distribution may not be persistent.
AB - Venus is covered with thick clouds. Ultraviolet (UV) images at 0.3–0.4 microns show detailed cloud features at the cloud-top level at about 70 km, which are created by an unknown UV-absorbing substance. Images acquired in this wavelength range have traditionally been used to measure winds at the cloud top. In this study, we report low-latitude winds obtained from the images taken by the UV imager, UVI, onboard the Akatsuki orbiter from December 2015 to March 2017. UVI provides images with two filters centered at 365 and 283 nm. While the 365-nm images enable continuation of traditional Venus observations, the 283-nm images visualize cloud features at an SO2 absorption band, which is novel. We used a sophisticated automated cloud-tracking method and thorough quality control to estimate winds with high precision. Horizontal winds obtained from the 283-nm images are generally similar to those from the 365-nm images, but in many cases, westward winds from the former are faster than the latter by a few m/s. From previous studies, one can argue that the 283-nm images likely reflect cloud features at higher altitude than the 365-nm images. If this is the case, the superrotation of the Venusian atmosphere generally increases with height at the cloud-top level, where it has been thought to roughly peak. The mean winds obtained from the 365-nm images exhibit local time dependence consistent with known tidal features. Mean zonal winds exhibit asymmetry with respect to the equator in the latter half of the analysis period, significantly at 365 nm and weakly at 283 nm. This contrast indicates that the relative altitude may vary with time and latitude, and so are the observed altitudes. In contrast, mean meridional winds do not exhibit much long-term variability. A previous study suggested that the geographic distribution of temporal mean zonal winds obtained from UV images from the Venus Express orbiter during 2006–2012 can be interpreted as forced by topographically induced stationary gravity waves. However, the geographic distribution of temporal mean zonal winds we obtained is not consistent with that distribution, which suggests that the distribution may not be persistent.
UR - http://www.scopus.com/inward/record.url?scp=85041908668&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85041908668&partnerID=8YFLogxK
U2 - 10.1186/s40623-017-0775-3
DO - 10.1186/s40623-017-0775-3
M3 - Article
AN - SCOPUS:85041908668
SN - 1343-8832
VL - 70
JO - earth, planets and space
JF - earth, planets and space
IS - 1
M1 - 10
ER -