TY - JOUR
T1 - MCNTs@MnO2 Nanocomposite Cathode Integrated with Soluble O2-Carrier Co-salen in Electrolyte for High-Performance Li-Air Batteries
AU - Hu, Xiaofei
AU - Wang, Jianbin
AU - Li, Zifan
AU - Wang, Jiaqi
AU - Gregory, Duncan H.
AU - Chen, Jun
N1 - Funding Information:
This work was supported by the NSFC (21231005) and MOE (B12015 and IRT13R30).
Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/3/8
Y1 - 2017/3/8
N2 - Li-air batteries (LABs) are promising because of their high energy density. However, LABs are troubled by large electrochemical polarization during discharge and charge, side reactions from both carbon cathode surface/peroxide product and electrolyte/superoxide intermediate, as well as the requirement for pure O2. Here we report the solution using multiwall carbon nanotubes (MCNTs)@MnO2 nanocomposite cathode integrated with N,N′-bis(salicylidene)ethylenediaminocobalt(II) (CoII-salen) in electrolyte for LABs. The advantage of such a combination is that on one hand, the coating layer of δ-MnO2 with about 2-3 nm on MCNTs@MnO2 nanocomposite catalyzes Li2O2 decomposition during charge and suppresses side reactions between product Li2O2 and MCNT surface. On the other hand, CoII-salen works as a mobile O2-carrier and accelerates Li2O2 formation through the reaciton of (CoIII-salen)2-O22- + 2Li+ + 2e- → 2CoII-salen + Li2O2. This reaction route overcomes the pure O2 limitation and avoids the formation of aggressive superoxide intermediate (O2- or LiO2), which easily attacks organic electrolyte. By using this double-catalyst system of Co-salen/MCNTs@MnO2, the lifetime of LABs is prolonged to 300 cycles at 500 mA g-1 (0.15 mA cm-2) with fixed capacity of 1000 mAh g-1 (0.30 mAh cm-2) in dry air (21% O2). Furthermore, we up-scale the capacity to 500 mAh (5.2 mAh cm-2) in pouch-type batteries (∼4 g, 325 Wh kg-1). This study should pave a new way for the design and construction of practical LABs.
AB - Li-air batteries (LABs) are promising because of their high energy density. However, LABs are troubled by large electrochemical polarization during discharge and charge, side reactions from both carbon cathode surface/peroxide product and electrolyte/superoxide intermediate, as well as the requirement for pure O2. Here we report the solution using multiwall carbon nanotubes (MCNTs)@MnO2 nanocomposite cathode integrated with N,N′-bis(salicylidene)ethylenediaminocobalt(II) (CoII-salen) in electrolyte for LABs. The advantage of such a combination is that on one hand, the coating layer of δ-MnO2 with about 2-3 nm on MCNTs@MnO2 nanocomposite catalyzes Li2O2 decomposition during charge and suppresses side reactions between product Li2O2 and MCNT surface. On the other hand, CoII-salen works as a mobile O2-carrier and accelerates Li2O2 formation through the reaciton of (CoIII-salen)2-O22- + 2Li+ + 2e- → 2CoII-salen + Li2O2. This reaction route overcomes the pure O2 limitation and avoids the formation of aggressive superoxide intermediate (O2- or LiO2), which easily attacks organic electrolyte. By using this double-catalyst system of Co-salen/MCNTs@MnO2, the lifetime of LABs is prolonged to 300 cycles at 500 mA g-1 (0.15 mA cm-2) with fixed capacity of 1000 mAh g-1 (0.30 mAh cm-2) in dry air (21% O2). Furthermore, we up-scale the capacity to 500 mAh (5.2 mAh cm-2) in pouch-type batteries (∼4 g, 325 Wh kg-1). This study should pave a new way for the design and construction of practical LABs.
UR - http://www.scopus.com/inward/record.url?scp=85014893897&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85014893897&partnerID=8YFLogxK
U2 - 10.1021/acs.nanolett.7b00203
DO - 10.1021/acs.nanolett.7b00203
M3 - Article
C2 - 28135104
AN - SCOPUS:85014893897
SN - 1530-6984
VL - 17
SP - 2073
EP - 2078
JO - Nano Letters
JF - Nano Letters
IS - 3
ER -