MAS, STMAS and DQMAS NMR Studies of the Thermal Transformation of Kaolinite

Xiongchao Lin, Keiko Ideta, Jin Miyawaki, Yonggang Wang, Isao Mochida, Seong Ho Yoon

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Thermal transformations of kaolinite at different temperatures were monitored using X-ray diffraction (XRD), high-resolution solid-state nuclear magnetic resonance (800 MHz for 1H Larmor frequency) with single-pulse magic-angle spinning, double-quantum filter satellite-transition magic-angle spinning, and double-quantum homo-nuclear correlation under magic-angle spinning experiments. Results show that combined experiments clearly manifest the transitions of silicon and aluminum structures at different thermal treatment stages; and moreover, high magnetic field offers higher sensitivity and resolution, hereby the slim resonances are obtained successfully at less stringent conditions. The dehydroxylation process of kaolinite causes the presence of short-range order in metakaolinite, which is absence of XRD reflections. Particularly, the features of metakaolinite with high concentration of defects are found with dispersive aluminum coordinations; and further, the distorted tetrahedral aluminum is detected in kaolinite-derived mullite because of the locally disorganized structure. The framework structure of kaolinite-derived mullite is considered to be primarily formed by the tetrahedral aluminum bonding with octahedral aluminum. In addition, except for the primary limitation caused by potentially long relaxation time of sample, such approaches are applicable to obtain detailedly structural characteristics of aluminosilicate.

Original languageEnglish
Pages (from-to)1081-1094
Number of pages14
JournalApplied Magnetic Resonance
Issue number9
Publication statusPublished - Sept 2013

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'MAS, STMAS and DQMAS NMR Studies of the Thermal Transformation of Kaolinite'. Together they form a unique fingerprint.

Cite this