Marine osmium isotope record during the Carnian “pluvial episode” (Late Triassic) in the pelagic Panthalassa Ocean

Yuki Tomimatsu, Tatsuo Nozaki, Honami Sato, Yutaro Takaya, Jun Ichi Kimura, Qing Chang, Hiroshi Naraoka, Manuel Rigo, Tetsuji Onoue

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

The Carnian Pluvial Episode (CPE) was a global environmental change and biotic crisis that occurred during the Carnian (Late Triassic). The climate during the CPE was characterized by a short-lived period of extreme rainfall, and an extinction of marine taxa is known to have occurred during the latest Julian (i.e. early Carnian). Although these events are considered to have been caused by the Wrangellia Flood Basalt (FB) volcanism, existing studies have found little direct evidence to support this. We investigated the temporal relationship between the eruption of Wrangellia FB and CPE using high-resolution microfossil biostratigraphy and paleo-seawater Os isotope data of an Upper Triassic bedded chert succession from an accretionary complex in Japan, which accumulated in a pelagic deep-sea environment in an equatorial region of the Panthalassa Ocean. Our biostratigraphic analysis, based on conodonts and radiolarians, and osmium isotope data show: (i) a continuous decline of initial Os isotope ratios (187Os/188Osi) in the early Julian; (ii) low 187Os/188Osi ratios during the late Julian; and (iii) an abrupt increase in 187Os/188Osi ratios at the end of the Julian. The decrease in 187Os/188Osi ratios throughout the Julian suggests an increased input of unradiogenic Os from the eruption of the Wrangellia FB into the ocean. Moreover, redox-sensitive elements, such as V and U, increased abruptly at the end of the Julian, which is the first evidence of reducing conditions during the CPE within the pelagic deep-sea Panthalassa Ocean. Marine anoxic event in the late Julian has been recognized from widespread deposition of black shales and organic-rich marls in intermediate to shallow water Tethyan sections. Thus, oxygen-depleted conditions occurred at the Tethyan shallow continental margin, as well as in the pelagic deep-sea Panthalassa Ocean, at the end of Wrangellia FB volcanism.

Original languageEnglish
Article number103387
JournalGlobal and Planetary Change
Volume197
DOIs
Publication statusPublished - Feb 2021

All Science Journal Classification (ASJC) codes

  • Global and Planetary Change
  • Oceanography

Fingerprint

Dive into the research topics of 'Marine osmium isotope record during the Carnian “pluvial episode” (Late Triassic) in the pelagic Panthalassa Ocean'. Together they form a unique fingerprint.

Cite this