TY - GEN
T1 - Manufacture of arbitrary cross-section composite honeycomb cores based on origami techniques
AU - Saito, Kazuya
AU - Pellegrino, Sergio
AU - Nojima, Taketoshi
PY - 2013
Y1 - 2013
N2 - In recent years, as space structures have become large and require higher accuracy, composite honeycombs, which can reduce weight and have low thermal expansion, are in increasing demand. As observed in the design of antenna reflectors and rocket bodies, both flat and 3D-shaped cores are used in this field. However, these special honeycombs have high manufacturing costs and limited applications. This study illustrates a new strategy to fabricate arbitrary cross-section honeycombs with applications of advanced composite materials. These types of honeycombs are usually manufactured from normal flat honeycombs by curving or carving, but the proposed method enables us to construct objective shaped honeycombs directly. The authors first introduce the concept of the kirigami honeycomb, which is made from single flat sheets and has periodical slits resembling origami. In previous studies, honeycombs having various shapes were made using this method, and were realized by only changing folding line diagrams (FLDs). In this study, these 3D kirigami honeycombs are generalized by numerical parameters and fabricated using a newly proposed FLD design method, which enables us to draw the FLD of arbitrary cross-section honeycombs. Next, the authors describe a method of applying this technique to advanced composite materials. Applying the partially soft composite techniques, folding lines are materialized by silicon rubber hinges on carbon fiber reinforced plastic. Complex FLD patterns are then printed using masks on carbon fabrics. Finally, these foldable composites that are cured in corrugated shapes in autoclaves are folded into honeycomb shapes, and some typical samples are shown with their FLDs.
AB - In recent years, as space structures have become large and require higher accuracy, composite honeycombs, which can reduce weight and have low thermal expansion, are in increasing demand. As observed in the design of antenna reflectors and rocket bodies, both flat and 3D-shaped cores are used in this field. However, these special honeycombs have high manufacturing costs and limited applications. This study illustrates a new strategy to fabricate arbitrary cross-section honeycombs with applications of advanced composite materials. These types of honeycombs are usually manufactured from normal flat honeycombs by curving or carving, but the proposed method enables us to construct objective shaped honeycombs directly. The authors first introduce the concept of the kirigami honeycomb, which is made from single flat sheets and has periodical slits resembling origami. In previous studies, honeycombs having various shapes were made using this method, and were realized by only changing folding line diagrams (FLDs). In this study, these 3D kirigami honeycombs are generalized by numerical parameters and fabricated using a newly proposed FLD design method, which enables us to draw the FLD of arbitrary cross-section honeycombs. Next, the authors describe a method of applying this technique to advanced composite materials. Applying the partially soft composite techniques, folding lines are materialized by silicon rubber hinges on carbon fiber reinforced plastic. Complex FLD patterns are then printed using masks on carbon fabrics. Finally, these foldable composites that are cured in corrugated shapes in autoclaves are folded into honeycomb shapes, and some typical samples are shown with their FLDs.
UR - http://www.scopus.com/inward/record.url?scp=84896996624&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896996624&partnerID=8YFLogxK
U2 - 10.1115/DETC2013-12743
DO - 10.1115/DETC2013-12743
M3 - Conference contribution
AN - SCOPUS:84896996624
SN - 9780791855942
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 37th Mechanisms and Robotics Conference
PB - American Society of Mechanical Engineers
T2 - ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
Y2 - 4 August 2013 through 7 August 2013
ER -