Manipulating electron redistribution to achieve electronic pyroelectricity in molecular [FeCo] crystals

Pritam Sadhukhan, Shu Qi Wu, Jeremy Ian Long, Takumi Nakanishi, Shinji Kanegawa, Kaige Gao, Kaoru Yamamoto, Hajime Okajima, Akira Sakamoto, Michael L. Baker, Thomas Kroll, Dimosthenis Sokaras, Atsushi Okazawa, Norimichi Kojima, Yoshihito Shiota, Kazunari Yoshizawa, Osamu Sato

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


Pyroelectricity plays a crucial role in modern sensors and energy conversion devices. However, obtaining materials with large and nearly constant pyroelectric coefficients over a wide temperature range for practical uses remains a formidable challenge. Attempting to discover a solution to this obstacle, we combined molecular design of labile electronic structure with the crystal engineering of the molecular orientation in lattice. This combination results in electronic pyroelectricity of purely molecular origin. Here, we report a polar crystal of an [FeCo] dinuclear complex exhibiting a peculiar pyroelectric behavior (a substantial sharp pyroelectric current peak and an unusual continuous pyroelectric current at higher temperatures) which is caused by a combination of Fe spin crossover (SCO) and electron transfer between the high-spin Fe ion and redox-active ligand, namely valence tautomerism (VT). As a result, temperature dependence of the pyroelectric behavior reported here is opposite from conventional ferroelectrics and originates from a transition between three distinct electronic structures. The obtained pyroelectric coefficient is comparable to that of polyvinylidene difluoride at room temperature.

Original languageEnglish
Article number4836
JournalNature communications
Issue number1
Publication statusPublished - Dec 1 2021

All Science Journal Classification (ASJC) codes

  • General
  • General Physics and Astronomy
  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology


Dive into the research topics of 'Manipulating electron redistribution to achieve electronic pyroelectricity in molecular [FeCo] crystals'. Together they form a unique fingerprint.

Cite this