Abstract
The creep behavior in pure aluminum has been investigated by helicoid spring creep tests at strain rates, ε̇, lower than 10-10 s-1 and low temperature ranging from 0.32Tm to 0.43T m. It was found that the creep behavior in this region depends strongly on grain sizes and impurity concentrations. For high-purity aluminum (5 N Al) with an average grain size, dg > 1600 μm, nearly the wire diameter of the spring sample, where the role of grain boundary during creep deformation can be negligible, the stress exponent was n ∼ 5 and the activation energy was Qc = 32 kJ/mol. Microstructural observation showed the formation of large dislocation cells (∼10μm) and tangled dislocations at the cell walls. For high-purity aluminum (5N Al) with d g = 24 μm, the stress exponent was n ∼ 1 and the activation energy was Qc = 15kJ/mol. On the other hand, for commercial low-purity aluminum (2 N Al) with dg = 25 μm, the stress exponent was n = 2 and the activation energy was Qc = 25 kJ/mol. Microstructural observations revealed dislocations emitted from grain boundaries, those dislocations interacting with intragranular dislocations and the formation of dislocation cells in the grains. Based on those experimental results, the low-temperature creep mechanisms in pure aluminum at ε̇ < 10-10 s-l have been discussed.
Original language | English |
---|---|
Pages (from-to) | 1381-1387 |
Number of pages | 7 |
Journal | Materials Transactions |
Volume | 52 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jul 2011 |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering