Low-lying excited states of C120 and C151: A multireference perturbation theory study

Tetsuya Sakata, Yukio Kawashima, Haruyuki Nakano

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


Excited states of two 7-aminocoumarin derivatives, coumarin 120 (7-amino-4-methylcoumarin) and coumarin 151 (7-amino-4-trifluoromethylcoumarin), were investigated using generalized multiconfigurational quasidegenerate perturbation theory (GMC-QDPT), multiconfigurational quasidegenerate perturbation theory (MC-QDPT) and time-dependent density functional theory (TDDFT) with the B3LYP and CAM-B3LYP functionals. The absorption and fluorescence spectra of C120 and C151 were calculated. We elucidated the characters of the low-lying states of C120 and C151. The absorption spectra calculated with GMC-QDPT and TDDFT B3LYP agreed well with the experimental data, while for the fluorescence spectra, the TDDFT calculations overestimated the fluorescence spectra compared to GMC-QDPT calculations. Utilizing active spaces with large numbers of electrons and orbitals for reference functions, GMC-QDPT showed a better performance than MC-QDPT with a complete active space self-consistent field (CASSCF) reference of active space with smaller number of electrons and orbitals. In our gas phase calculation, we found that the optimized structures for the first excited states have a planar amino group with a CN single bond, while the amino group is pyramidal in the ground state.

Original languageEnglish
Pages (from-to)12363-12368
Number of pages6
JournalJournal of Physical Chemistry A
Issue number47
Publication statusPublished - Dec 2 2010

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry


Dive into the research topics of 'Low-lying excited states of C120 and C151: A multireference perturbation theory study'. Together they form a unique fingerprint.

Cite this