TY - JOUR
T1 - Low-frequency oscillations of finger skin blood flow during the initial stage of cold-induced vasodilation at different air temperatures
AU - Sera, Toshihiro
AU - Kohno, Taiki
AU - Nakashima, Yusuke
AU - Uesugi, Musashi
AU - Kudo, Susumu
N1 - Funding Information:
This research was supported by JSPS KAKENHI Grant Number JP16H02529.
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12
Y1 - 2020/12
N2 - Background: Cold-induced vasodilation (CIVD) is known to be influenced by the ambient temperature. Frequency analysis of blood flow provides information on physiological regulation of the cardiovascular system, such as myogenic, neurogenic, endothelial nitric oxide (NO) dependent, and NO-independent activities. In this study, we hypothesized that the major origin of CIVD occurs prior to the CIVD event and investigated finger skin blood flow during the initial stage of CIVD at different ambient temperatures using frequency analysis. Methods: Eighteen healthy volunteers immersed their fingers in 5 °C water at air temperatures of 20 °C and 25 °C. Finger skin blood flow was measured using laser Doppler flowmetry and analyzed using Morlet mother wavelet. We defined the time when the rate of blood flow increased dramatically as the onset of CIVD, and defined three phases as the periods from the onset of cooling to minimum blood flow (vasoconstriction), from minimum blood flow to the onset of CIVD (prior to CIVD), and from the onset of CIVD to maximum blood flow (CIVD). Results: The increment ratio of blood flow at CIVD was significantly higher at 20 °C air temperature. In particular, at 20 °C air temperature, arteriovenous anastomoses (AVAs) might be closed at baseline, as finger skin temperature was much lower than at 25 °C air temperature, and endothelial NO-independent activity was significantly higher and neurogenic activity significantly lower during vasoconstriction than at baseline. Additionally, the differences in both activities between vasoconstriction and prior to CIVD were significant. On the other hand, there were no significant differences in endothelial NO-dependent activity between baseline and all phases at both air temperatures. Conclusions: Our results indicated that the increase of endothelial NO-independent activity and the decrease of neurogenic activity may contribute to the high increment ratio of blood flow at CIVD at 20 °C air temperature.
AB - Background: Cold-induced vasodilation (CIVD) is known to be influenced by the ambient temperature. Frequency analysis of blood flow provides information on physiological regulation of the cardiovascular system, such as myogenic, neurogenic, endothelial nitric oxide (NO) dependent, and NO-independent activities. In this study, we hypothesized that the major origin of CIVD occurs prior to the CIVD event and investigated finger skin blood flow during the initial stage of CIVD at different ambient temperatures using frequency analysis. Methods: Eighteen healthy volunteers immersed their fingers in 5 °C water at air temperatures of 20 °C and 25 °C. Finger skin blood flow was measured using laser Doppler flowmetry and analyzed using Morlet mother wavelet. We defined the time when the rate of blood flow increased dramatically as the onset of CIVD, and defined three phases as the periods from the onset of cooling to minimum blood flow (vasoconstriction), from minimum blood flow to the onset of CIVD (prior to CIVD), and from the onset of CIVD to maximum blood flow (CIVD). Results: The increment ratio of blood flow at CIVD was significantly higher at 20 °C air temperature. In particular, at 20 °C air temperature, arteriovenous anastomoses (AVAs) might be closed at baseline, as finger skin temperature was much lower than at 25 °C air temperature, and endothelial NO-independent activity was significantly higher and neurogenic activity significantly lower during vasoconstriction than at baseline. Additionally, the differences in both activities between vasoconstriction and prior to CIVD were significant. On the other hand, there were no significant differences in endothelial NO-dependent activity between baseline and all phases at both air temperatures. Conclusions: Our results indicated that the increase of endothelial NO-independent activity and the decrease of neurogenic activity may contribute to the high increment ratio of blood flow at CIVD at 20 °C air temperature.
UR - http://www.scopus.com/inward/record.url?scp=85096449578&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096449578&partnerID=8YFLogxK
U2 - 10.1186/s40101-020-00248-4
DO - 10.1186/s40101-020-00248-4
M3 - Article
C2 - 33228778
AN - SCOPUS:85096449578
SN - 1880-6791
VL - 39
JO - Journal of physiological anthropology
JF - Journal of physiological anthropology
IS - 1
M1 - 37
ER -