TY - JOUR
T1 - Loss-of-function and gain-of-function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in arabidopsis
AU - Hirano, Tomoko
AU - Matsuzawa, Tomohiko
AU - Takegawa, Kaoru
AU - Sato, Masa H.
PY - 2011/2
Y1 - 2011/2
N2 - In eukaryotic cells, PtdIns 3,5-kinase, Fab1/PIKfyve produces PtdIns (3,5) P2 from PtdIns 3-P, and functions in vacuole/ lysosome homeostasis. Herein, we show that expression of Arabidopsis (Arabidopsis thaliana) FAB1A/B in fission yeast (Schizosaccharomyces pombe) fab1 knockout cells fully complements the vacuole morphology phenotype. Subcellular localizations of FAB1A and FAB1B fused with green fluorescent protein revealed that FAB1A/B-green fluorescent proteins localize to the endosomes in root epidermal cells of Arabidopsis. Furthermore, reduction in the expression levels of FAB1A/B by RNA interference impairs vacuolar acidification and endocytosis. These results indicate that Arabidopsis FAB1A/B functions as PtdIns 3,5-kinase in plants and in fission yeast. Conditional knockdown mutant shows various phenotypes including root growth inhibition, hyposensitivity to exogenous auxin, and disturbance of root gravitropism. These phenotypes are observed also in the overproducing mutants of FAB1A and FAB1B. The overproducing mutants reveal additional morphological phenotypes including dwarfism, male-gametophyte sterility, and abnormal floral organs. Taken together, this evidence indicates that imbalanced expression of FAB1A/B impairs endomembrane homeostasis including endocytosis, vacuole formation, and vacuolar acidification, which causes pleiotropic developmental phenotypes mostly related to the auxin signaling in Arabidopsis.
AB - In eukaryotic cells, PtdIns 3,5-kinase, Fab1/PIKfyve produces PtdIns (3,5) P2 from PtdIns 3-P, and functions in vacuole/ lysosome homeostasis. Herein, we show that expression of Arabidopsis (Arabidopsis thaliana) FAB1A/B in fission yeast (Schizosaccharomyces pombe) fab1 knockout cells fully complements the vacuole morphology phenotype. Subcellular localizations of FAB1A and FAB1B fused with green fluorescent protein revealed that FAB1A/B-green fluorescent proteins localize to the endosomes in root epidermal cells of Arabidopsis. Furthermore, reduction in the expression levels of FAB1A/B by RNA interference impairs vacuolar acidification and endocytosis. These results indicate that Arabidopsis FAB1A/B functions as PtdIns 3,5-kinase in plants and in fission yeast. Conditional knockdown mutant shows various phenotypes including root growth inhibition, hyposensitivity to exogenous auxin, and disturbance of root gravitropism. These phenotypes are observed also in the overproducing mutants of FAB1A and FAB1B. The overproducing mutants reveal additional morphological phenotypes including dwarfism, male-gametophyte sterility, and abnormal floral organs. Taken together, this evidence indicates that imbalanced expression of FAB1A/B impairs endomembrane homeostasis including endocytosis, vacuole formation, and vacuolar acidification, which causes pleiotropic developmental phenotypes mostly related to the auxin signaling in Arabidopsis.
UR - http://www.scopus.com/inward/record.url?scp=79551706977&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79551706977&partnerID=8YFLogxK
U2 - 10.1104/pp.110.167981
DO - 10.1104/pp.110.167981
M3 - Article
C2 - 21173023
AN - SCOPUS:79551706977
SN - 0032-0889
VL - 155
SP - 797
EP - 807
JO - Plant physiology
JF - Plant physiology
IS - 2
ER -