Long-term exercise protects against cellular stresses in aged mice

Irina Belaya, Masataka Suwa, Tao Chen, Rashid Giniatullin, Katja M. Kanninen, Mustafa Atalay, Shuzo Kumagai

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


The current study examined the effect of aging and long-term wheel-running on the expression of heat shock protein (HSP), redox regulation, and endoplasmic reticulum (ER) stress markers in tibialis anterior (T.A.) and soleus muscle of mice. Male mice were divided into young (Y, 3-month-old), old-sedentary (OS, 24-month-old), and old-exercise (OE, 24-month-old) groups. The OE group started voluntary wheel-running at 3 months and continued until 24 months of age. Aging was associated with a higher thioredoxin-interacting protein (TxNiP) level, lower thioredoxin-1 (TRX-1) to TxNiP ratio-a determinant of redox regulation and increased CHOP, an indicator of ER stress-related apoptosis signaling in both muscles. Notably, GRP78, a key indicator of ER stress, was selectively elevated in T.A. Long-term exercise decreased TxNiP in T.A. and soleus muscles and increased the TRX-1/TxNiP ratio in soleus muscle of aged mice. Inducible HSP70 and constituent HSC70 were upregulated, whereas CHOP was reduced after exercise in soleus muscle. Thus, our data demonstrated that aging induced oxidative stress and activated ER stress-related apoptosis signaling in skeletal muscle, whereas long-term wheel-running improved redox regulation, ER stress adaptation and attenuated ER stress-related apoptosis signaling. These findings suggest that life-long exercise can protect against age-related cellular stress.

Original languageEnglish
Article number2894247
JournalOxidative medicine and cellular longevity
Publication statusPublished - 2018

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Ageing
  • Cell Biology


Dive into the research topics of 'Long-term exercise protects against cellular stresses in aged mice'. Together they form a unique fingerprint.

Cite this