TY - JOUR
T1 - Localization of stereotactic targets by microrecording of thalamic somatosensory evoked potentials
AU - Shima, F.
AU - Morioka, T.
AU - Tobimatsu, S.
AU - Kavaklis, O.
AU - Kato, M.
AU - Fukui, M.
PY - 1991/1/1
Y1 - 1991/1/1
N2 - To improve the localization of stereotactic targets, somatosensory evoked potentials (SEPs) were recorded from the thalamus and subthalamic area using a specially designed semimicroelectrode in 61 patients and a conventional ''macroelectrode'' in 17 patients. By means of the semimicroelectrode, median nerve stimulation evoked two distinct SEPs, consisting of a diphasic wave with a huge positivity restricted to the nucleus ventrocaudalis (Vc) and a triphasic wave of lower amplitude with a major negativity in the ventral part of the nucleus ventrointermedius (Vim) and nucleus ventrooralis posterior (Vop) as well as the subthalamic lemniscal pathway. The Vim-Vc junction could thus be clearly delineated by an abrupt transition of SEPs from one type to the other with a precision of 1 mm. The parvicellular part of the Vc (Vcpc), situated in its basal region, was distinguishable from the Vc proper by a significant reduction of the positivity elicited by stimulation of the median nerve and by a rapid growth of a diphasic SEPs to stimulation of the posterior tibial nerve. In the other thalamic nuclei, stimulation of the median nerve elicited triphasic SEPs of a very small amplitude, suggesting a volume conduction current from the lemniscal pathway. With the macroelectrode, the positivity in the Vc was sensitive to electrode manipulation and the thalamic nuclei could not be distinctly outlined. SEP monitoring using the semimicroelectrode significantly improved the precision of target localization, which allowed minimizing of the volume of the therapeutic lesion without losing surgical effectiveness, while avoiding complications associated with increased penetration of the coagulating electrode. It is suggested that recording serial thalamic SEPs with the semimicroelectrode is a practical method to refine stereotactic targets in the thalamus.
AB - To improve the localization of stereotactic targets, somatosensory evoked potentials (SEPs) were recorded from the thalamus and subthalamic area using a specially designed semimicroelectrode in 61 patients and a conventional ''macroelectrode'' in 17 patients. By means of the semimicroelectrode, median nerve stimulation evoked two distinct SEPs, consisting of a diphasic wave with a huge positivity restricted to the nucleus ventrocaudalis (Vc) and a triphasic wave of lower amplitude with a major negativity in the ventral part of the nucleus ventrointermedius (Vim) and nucleus ventrooralis posterior (Vop) as well as the subthalamic lemniscal pathway. The Vim-Vc junction could thus be clearly delineated by an abrupt transition of SEPs from one type to the other with a precision of 1 mm. The parvicellular part of the Vc (Vcpc), situated in its basal region, was distinguishable from the Vc proper by a significant reduction of the positivity elicited by stimulation of the median nerve and by a rapid growth of a diphasic SEPs to stimulation of the posterior tibial nerve. In the other thalamic nuclei, stimulation of the median nerve elicited triphasic SEPs of a very small amplitude, suggesting a volume conduction current from the lemniscal pathway. With the macroelectrode, the positivity in the Vc was sensitive to electrode manipulation and the thalamic nuclei could not be distinctly outlined. SEP monitoring using the semimicroelectrode significantly improved the precision of target localization, which allowed minimizing of the volume of the therapeutic lesion without losing surgical effectiveness, while avoiding complications associated with increased penetration of the coagulating electrode. It is suggested that recording serial thalamic SEPs with the semimicroelectrode is a practical method to refine stereotactic targets in the thalamus.
UR - http://www.scopus.com/inward/record.url?scp=0026071423&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026071423&partnerID=8YFLogxK
U2 - 10.1227/00006123-199102000-00008
DO - 10.1227/00006123-199102000-00008
M3 - Article
C2 - 1997890
AN - SCOPUS:0026071423
SN - 0148-396X
VL - 28
SP - 223
EP - 230
JO - Neurosurgery
JF - Neurosurgery
IS - 2
ER -