TY - JOUR
T1 - Localization of a high-affinity inositol 1,4,5-trisphosphate/inositol 1,4,5,6-tetrakisphosphate binding domain to the pleckstrin homology module of a new 130 KDa protein
T2 - Characterization of the determinants of structural specificity
AU - Takeuchi, Hiroshi
AU - Kanematsu, Takashi
AU - Misumi, Yoshio
AU - Yaakob, Hassan Bin
AU - Yagisawa, Hitoshi
AU - Ikehara, Yukio
AU - Watanabe, Yutaka
AU - Tan, Zheng
AU - Shears, Stephen B.
AU - Hirata, Masato
PY - 1996/9/1
Y1 - 1996/9/1
N2 - We have previously identified a novel 130 kDa protein (p130) which binds Ins(1,4,5)P3 and shares 38% sequence identity with phospholipase C-δ1 [Kanematsu, Misumi, Watanabe, Ozaki, Koga, Iwanaga, Ikehara and Hirata (1996) Biochem. J. 313, 319-325]. We have now transfected COS-1 cells with genes encoding the entire length of the molecule or one of several truncated mutants, in order to locate the region for binding of Ins(1,4,5)P3. Deletion of N-terminal residues 116-232, the region which corresponds to the pleckstrin homology (PH) domain of the molecule, completely abolished binding activity. This result was confirmed when the PH domain itself (residues 95-232), isolated from a bacterial expression system, was found to bind [3H]Ins(1,4,5)P3. We also found that Ins(1,4,5,6)P4 was as efficacious as Ins(1,4,5)P3 in displacing [3H]Ins(1,4,5)P3, suggesting that these two polyphosphates bind to p130 with similar affinity. This conclusion was confirmed by direct binding studies using [3H]Ins(1,4,5,6)P4 with high specific radioactivity which we prepared ourselves. Binding specificity was also examined with a variety of inositol phosphate derivatives. As is the case with other PH domains characterized to date, we found that the 4,5-vicinal phosphate pair was an essential determinant of ligand specificity. However, the PH domain of p130 exhibited some novel features. For example, the 3- and/or 6-phosphates could also contribute to overall binding; this contrasts with some other PH domains where these phosphate groups decrease ligand affinity by imposing a steric constraint. Secondly, a free monoester 1-phosphate substantially increased binding affinity, which is a situation so far unique to the PH domain of p130.
AB - We have previously identified a novel 130 kDa protein (p130) which binds Ins(1,4,5)P3 and shares 38% sequence identity with phospholipase C-δ1 [Kanematsu, Misumi, Watanabe, Ozaki, Koga, Iwanaga, Ikehara and Hirata (1996) Biochem. J. 313, 319-325]. We have now transfected COS-1 cells with genes encoding the entire length of the molecule or one of several truncated mutants, in order to locate the region for binding of Ins(1,4,5)P3. Deletion of N-terminal residues 116-232, the region which corresponds to the pleckstrin homology (PH) domain of the molecule, completely abolished binding activity. This result was confirmed when the PH domain itself (residues 95-232), isolated from a bacterial expression system, was found to bind [3H]Ins(1,4,5)P3. We also found that Ins(1,4,5,6)P4 was as efficacious as Ins(1,4,5)P3 in displacing [3H]Ins(1,4,5)P3, suggesting that these two polyphosphates bind to p130 with similar affinity. This conclusion was confirmed by direct binding studies using [3H]Ins(1,4,5,6)P4 with high specific radioactivity which we prepared ourselves. Binding specificity was also examined with a variety of inositol phosphate derivatives. As is the case with other PH domains characterized to date, we found that the 4,5-vicinal phosphate pair was an essential determinant of ligand specificity. However, the PH domain of p130 exhibited some novel features. For example, the 3- and/or 6-phosphates could also contribute to overall binding; this contrasts with some other PH domains where these phosphate groups decrease ligand affinity by imposing a steric constraint. Secondly, a free monoester 1-phosphate substantially increased binding affinity, which is a situation so far unique to the PH domain of p130.
UR - http://www.scopus.com/inward/record.url?scp=0029838615&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029838615&partnerID=8YFLogxK
U2 - 10.1042/bj3180561
DO - 10.1042/bj3180561
M3 - Article
C2 - 8809047
AN - SCOPUS:0029838615
SN - 0264-6021
VL - 318
SP - 561
EP - 568
JO - Biochemical Journal
JF - Biochemical Journal
IS - 2
ER -