Abstract
Milling-time-dependent local structural evolution of mechanically alloyed Mg50Co50 was investigated by the atomic pair distribution function analysis using both neutron and synchrotron X-ray powder diffraction data. The initial powder mixture was composed of three phases: hexagonal close-packed (hcp) Mg, hcp Co, and face-centered cubic (fcc) Co. As milling progressed, rather rapid reduction in crystallite sizes of hcp Mg and hcp Co along with the formation of the Mg50Co50 phase was observed. Meanwhile, size reduction in the fcc Co phase was found to be relatively gradual, accompanied by heavy strain. Mg50Co50 forms at the early stage of milling and bears an amorphous nature.
Original language | English |
---|---|
Pages (from-to) | 7723-7728 |
Number of pages | 6 |
Journal | Journal of Physical Chemistry C |
Volume | 115 |
Issue number | 15 |
DOIs | |
Publication status | Published - Apr 21 2011 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films