Liquid cooling network systems for energy conservation in data centers

Mayumi Ouchi, Yoshiyuki Abe, Masato Fukagaya, Haruhiko Ohta, Yasuhisa Shinmoto, Masahide Sato, Ken Ichi Iimura

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Energy consumption in data center has been drastically increasing in recent years. In data center, server racks are cooled down by air conditioning for the whole room in a roundabout way. This air cooling method is inefficient in cooling and it causes hotspot problem that IT equipments are not cooled down enough, but the room is overcooled. On the other hand, countermeasure against the heat of the IT equipments is also one of the big issues. We therefore proposed new liquid cooling systems which IT equipments themselves are cooled down and exhaust heat is not radiated into the server room. For our liquid cooling systems, three kinds of cooling methods have been developed simultaneously. Two of them are direct cooling methods that the cooling jacket is directly attached to heat source, or CPU in this case. Single-phase heat exchanger or two-phase heat exchanger is used as cooling jackets. The other is indirect cooling methods that the heat generated from CPU is transported to the outside of the chassis through flat heat pipes, and condensation sections of the heat pipes are cooled down by liquid. Verification tests have been conducted by use of real server racks equipped with these cooling techniques while pushing ahead with five R&D subjects which constitute our liquid cooling system, which single-phase heat exchanger, two-phase heat exchanger, high performance flat heat pipes, nanofluids technology, and plug-in connector. As a result, the energy saving effect of 50∼60% comparing with conventional air cooling system was provided in direct cooling technique with single-phase heat exchanger.

Original languageEnglish
Title of host publicationASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, InterPACK 2011
Pages443-449
Number of pages7
DOIs
Publication statusPublished - 2011
EventASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, InterPACK 2011 - Portland, OR, United States
Duration: Jul 6 2011Jul 8 2011

Publication series

NameASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, InterPACK 2011
Volume2

Other

OtherASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, InterPACK 2011
Country/TerritoryUnited States
CityPortland, OR
Period7/6/117/8/11

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Liquid cooling network systems for energy conservation in data centers'. Together they form a unique fingerprint.

Cite this