LINE-1 vectors mediate recombinant antibody gene transfer by retrotransposition in Chinese hamster ovary cells

Feiyang Zheng, Yoshinori Kawabe, Mai Murakami, Mamika Takahashi, Kyoka Nishihata, Souichiro Yoshida, Akira Ito, Masamichi Kamihira

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Retrotransposons, such as long interspersed element-1 (LINE-1), can copy themselves to other genomic loci via a transposition event (termed retrotransposition). Retrotransposons, therefore, have potential use as an efficient gene delivery tool to integrate multiple copies of a target gene into a host genome. Here, we developed a retrotransposon vector based on LINE-1 that achieves target gene integration of multiple transgene copies. The retrotransposon vector contains a neomycin resistance gene split by an intron as a marker gene, and a gene encoding an antibody single-chain variable fragment (Fv) fused with the constant antibody region (Fc) (scFv-Fc) as a model target gene. G418-resistant Chinese hamster ovary cells were generated using this retrotransposon vector, and scFv-Fc was produced in the culture medium. To regulate retrotransposition, we developed a retrotransposon vector system that separately expressed the two open reading frames (ORF1 and ORF2) of LINE-1. Genomic PCR analysis detected the transgene sequence in almost all tested clones. Compared with clones established using the intact LINE-1 vector, clones generated with the split ORF1 and ORF2 system showed similar specific scFv-Fc productivity and retrotransposition efficiency. This approach of using a retrotransposon-based vector system has the potential to provide a new gene delivery tool for mammalian cells.

Original languageEnglish
Article number2000620
JournalBiotechnology Journal
Issue number7
Publication statusPublished - Jul 2021

All Science Journal Classification (ASJC) codes

  • Applied Microbiology and Biotechnology
  • Molecular Medicine


Dive into the research topics of 'LINE-1 vectors mediate recombinant antibody gene transfer by retrotransposition in Chinese hamster ovary cells'. Together they form a unique fingerprint.

Cite this