Abstract
In the present study, numerical wind simulation was conducted by reproducing the realistic topography near wind turbine sites with high spatial resolutions and using the Large-Eddy Simulation (LES) technique. The topography near wind turbine sites serves as the origin of the terrain-induced turbulence. The obtained numerical simulation results showed that the terrain-induced turbulence is generated at a small terrain feature located upstream of the wind turbine. The generated terrain-induced turbulence affects the wind turbine directly. The wind speed and wind direction at the wind turbine site are significantly changed with time. In the present study, a combination of the series of wind simulation results and on-site operation experience led to a decision to adopt an “automatic shutdown program”. Here, an “automatic shutdown program” means the automatic suspension of wind turbine operation based on the wind speed and wind direction meeting the conditions associated with significant effects of terrain-induced turbulence at a wind turbine site. The adoption of the “automatic shutdown program” has successfully led to a large reduction in the number of occurrences of wind turbine damage, thus, creating major positive economic effects.
Original language | English |
---|---|
Article number | 1530 |
Journal | Energies |
Volume | 11 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 2018 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Control and Optimization
- Electrical and Electronic Engineering