Abstract
Forced convective heat transfer to fully developed laminar flow inside a tube which is uniformly heated along a finite length from the outer surface is numerically analysed as a conjugated problem. The four prescribable dimensionless parameters in this analysis are: heated length to inner diameter ratio L*, outer to inner diameter ratio Ro, wall to fluid conductivity ratio Λ, and Peclet number Pe. Effects of the parameters on the distributions of heat flux and wall temperature at the inner surface of the tube, the mixing-cup temperature of fluid and the local Nusselt number are graphically demonstrated. The region affected by axial heat conduction in the wall is discussed with respect to the heat flux distribution and the length of the region is expressed by a function of Λ, Ro and Pe.
Original language | English |
---|---|
Pages (from-to) | 1116-1122 |
Number of pages | 7 |
Journal | Transactions of the Japan Society of Mechanical Engineers Series B |
Volume | 54 |
Issue number | 501 |
DOIs | |
Publication status | Published - 1988 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Mechanical Engineering