Abstract
Molecular hydrogen (H2) is one of the most important energy sources for subseafloor chemolithoautotrophic microbial ecosystems in the deep-sea hydrothermal environments. This study investigated stable isotope ratios of H2 in 20°-375°C hydrothermal fluids to evaluate usefulness of the isotope ratio as a tracer to explore the H2- metabolisms. Prior to the observation, we developed an improved analytical method for the determination of concentration and stable isotope ratio of H 2. This method achieved a relatively high sensitivity with a detection limit of 1 nmol H2 within an analytical error of 10‰ in the δDH2 value. The δDH2 values in the high-temperature fluids were between -405‰ and -330‰, indicating the achievement of the hydrogen isotopic equilibrium between H2 and H2O at around the hydrothermal end-member temperature. In contrast, several low-temperature fluids showed apparently smaller δDH2 values than those in the high-temperature fluids in spite of a negligible δDH2 change due to fluid-seawater mixing, suggesting the possibility of δDH2 change in the low-temperature fluids and the surrounding environments. Since the δDH2 change in low-temperature environments is not well explained by the very sluggish abiotic thermal isotopic equilibrium between H2 and H2O, it could be associated with (micro)biological H2-consuming and/or H 2-generating metabolisms that would strongly promote the isotopic equilibrium at low temperatures. Our first detection of the δD H2 variation in deep-sea hydrothermal systems presents the availability of the δDH2 value as a new tracer for microbes whose enzymes catalyze D/H exchange in H2.
Original language | English |
---|---|
Article number | G03021 |
Journal | Journal of Geophysical Research: Biogeosciences |
Volume | 115 |
Issue number | 3 |
DOIs | |
Publication status | Published - Sept 1 2010 |
All Science Journal Classification (ASJC) codes
- Geophysics
- Forestry
- Oceanography
- Aquatic Science
- Ecology
- Water Science and Technology
- Soil Science
- Geochemistry and Petrology
- Earth-Surface Processes
- Atmospheric Science
- Earth and Planetary Sciences (miscellaneous)
- Space and Planetary Science
- Palaeontology