TY - JOUR
T1 - Involvement of p53-transactivated Puma in cisplatin-induced renal tubular cell death
AU - Tsuruya, Kazuhiko
AU - Yotsueda, Hideki
AU - Ikeda, Hirofumi
AU - Taniguchi, Masatomo
AU - Masutani, Kohsuke
AU - Hayashida, Hideko
AU - Hirakata, Hideki
AU - Iida, Mitsuo
PY - 2008/10/10
Y1 - 2008/10/10
N2 - Aims: The tumor suppressor protein p53 plays a critical role as a determinant of cell survival when cells are exposed to various toxic stresses, by preventing growth arrest, replication of damaged DNA, and apoptosis. A novel p53-dependent proapoptotic gene, Puma (p53 upregulated modulator of apoptosis) is thought to participate in this process. Recently, p53 was reported to play an essential role in cisplatin-induced renal tubular cell (RTC) death. The objective of the present study was to elucidate the roles of p53 and Puma in cisplatin-induced RTC death. Main methods: We examined the in vivo expression of p53 and Puma-α in the kidney and evaluated the modification of Puma-α expression and RTC death by in vitro treatment with pifithrin-α (PFT-α), a specific p53 inhibitor, or Puma-α-specific small interfering RNA (siRNA). Key findings: While no immunoreactivity for anti-p53- and anti-Puma-α antibody was detected in the control rat kidney, de novo expression of p53 and Puma-α was identified in the proximal tubular cells of the outer medulla at 6 h after cisplatin injection. Upregulation of these proteins preceded severe RTC injury. In vitro experiments revealed that PFT-α inhibited upregulation of Puma-α, and inhibition of Puma-α, either by PFT-α or by Puma-α-specific siRNA, decreased RTC death induced by 24-h cisplatin exposure. Significance: Our results indicated that p53 activation mediated cisplatin-induced RTC death through upregulation of Puma, and suggested that inhibition of p53 and Puma is beneficial for the prevention and treatment of cisplatin-induced acute renal failure.
AB - Aims: The tumor suppressor protein p53 plays a critical role as a determinant of cell survival when cells are exposed to various toxic stresses, by preventing growth arrest, replication of damaged DNA, and apoptosis. A novel p53-dependent proapoptotic gene, Puma (p53 upregulated modulator of apoptosis) is thought to participate in this process. Recently, p53 was reported to play an essential role in cisplatin-induced renal tubular cell (RTC) death. The objective of the present study was to elucidate the roles of p53 and Puma in cisplatin-induced RTC death. Main methods: We examined the in vivo expression of p53 and Puma-α in the kidney and evaluated the modification of Puma-α expression and RTC death by in vitro treatment with pifithrin-α (PFT-α), a specific p53 inhibitor, or Puma-α-specific small interfering RNA (siRNA). Key findings: While no immunoreactivity for anti-p53- and anti-Puma-α antibody was detected in the control rat kidney, de novo expression of p53 and Puma-α was identified in the proximal tubular cells of the outer medulla at 6 h after cisplatin injection. Upregulation of these proteins preceded severe RTC injury. In vitro experiments revealed that PFT-α inhibited upregulation of Puma-α, and inhibition of Puma-α, either by PFT-α or by Puma-α-specific siRNA, decreased RTC death induced by 24-h cisplatin exposure. Significance: Our results indicated that p53 activation mediated cisplatin-induced RTC death through upregulation of Puma, and suggested that inhibition of p53 and Puma is beneficial for the prevention and treatment of cisplatin-induced acute renal failure.
UR - http://www.scopus.com/inward/record.url?scp=52149111832&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=52149111832&partnerID=8YFLogxK
U2 - 10.1016/j.lfs.2008.08.002
DO - 10.1016/j.lfs.2008.08.002
M3 - Article
C2 - 18761355
AN - SCOPUS:52149111832
SN - 0024-3205
VL - 83
SP - 550
EP - 556
JO - Life Sciences
JF - Life Sciences
IS - 15-16
ER -