Investigation of exotic electronic properties on rare-earth & actinide compounds under high pressure

Fuminori Honda, Dexin Li, Keigo Okauchi, Yoshiya Homma, Ai Nakamura, Dai Aoki

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


We have synthesized and investigated electronic properties of several non-centrosymmetric actinide compounds, which do not have an inversion center in the crystal structure globally or locally, under high pressure. The Néel temperature of an antiferromagnet UIrSi3 with globally non-centrosymmetric structure increases with increasing pressure at a rate of 2.5 K/GPa up to 5 GPa. On the other hand, T Ns of U2Rh3Si5 and U2Ir3Si5, which are locally non-centrosymmetric compounds, decrease with -1 K/GPa and -0.5 K/GPa with increasing pressure, respectively. Here, U2Ir3Si5 is a new antiferromagnet crystallizing in the U2Co3Si5-type of orthorhombic structure. Below T N = 36.5 K, U2Ir3Si5 shows magnetic order-order transition at T 0 = 26.1 K with a first-order nature. Electrical resistivity in U2Ir3Si5 shows semiconducting-like behavior due to the formation of the super-zone gap in the antiferromagnetic state. T N and T 0 as well as semi-conducting-like behavior in resistivity are suppressed by external pressure.

Original languageEnglish
Pages (from-to)2975-2986
Number of pages12
JournalMRS Advances
Issue number44
Publication statusPublished - 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Mechanics of Materials
  • Materials Science(all)
  • Condensed Matter Physics


Dive into the research topics of 'Investigation of exotic electronic properties on rare-earth & actinide compounds under high pressure'. Together they form a unique fingerprint.

Cite this