TY - JOUR
T1 - Interferon signaling and hypercytokinemia-related gene expression in the blood of antidepressant non-responders
AU - Yamagata, Hirotaka
AU - Tsunedomi, Ryouichi
AU - Kamishikiryo, Toshiharu
AU - Kobayashi, Ayumi
AU - Seki, Tomoe
AU - Kobayashi, Masaaki
AU - Hagiwara, Kosuke
AU - Yamada, Norihiro
AU - Chen, Chong
AU - Uchida, Shusaku
AU - Ogihara, Hiroyuki
AU - Hamamoto, Yoshihiko
AU - Okada, Go
AU - Fuchikami, Manabu
AU - Iga, Jun ichi
AU - Numata, Shusuke
AU - Kinoshita, Makoto
AU - Kato, Takahiro A.
AU - Hashimoto, Ryota
AU - Nagano, Hiroaki
AU - Ueno, Shuichi
AU - Okamoto, Yasumasa
AU - Ohmori, Tetsuro
AU - Nakagawa, Shin
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/1
Y1 - 2023/1
N2 - Only 50% of patients with depression respond to the first antidepressant drug administered. Thus, biomarkers for prediction of antidepressant responses are needed, as predicting which patients will not respond to antidepressants can optimize selection of alternative therapies. We aimed to identify biomarkers that could predict antidepressant responsiveness using a novel data-driven approach based on statistical pattern recognition. We retrospectively divided patients with major depressive disorder into antidepressant responder and non-responder groups. Comprehensive gene expression analysis was performed using peripheral blood without narrowing the genes. We designed a classifier according to our own discrete Bayes decision rule that can handle categorical data. Nineteen genes showed differential expression in the antidepressant non-responder group (n = 15) compared to the antidepressant responder group (n = 15). In the training sample of 30 individuals, eight candidate genes had significantly altered expression according to quantitative real-time polymerase chain reaction. The expression of these genes was examined in an independent test sample of antidepressant responders (n = 22) and non-responders (n = 12). Using the discrete Bayes classifier with the HERC5, IFI6, and IFI44 genes identified in the training set yielded 85% discrimination accuracy for antidepressant responsiveness in the 34 test samples. Pathway analysis of the RNA sequencing data for antidepressant responsiveness identified that hypercytokinemia- and interferon-related genes were increased in non-responders. Disease and biofunction analysis identified changes in genes related to inflammatory and infectious diseases, including coronavirus disease. These results strongly suggest an association between antidepressant responsiveness and inflammation, which may be useful for future treatment strategies for depression.
AB - Only 50% of patients with depression respond to the first antidepressant drug administered. Thus, biomarkers for prediction of antidepressant responses are needed, as predicting which patients will not respond to antidepressants can optimize selection of alternative therapies. We aimed to identify biomarkers that could predict antidepressant responsiveness using a novel data-driven approach based on statistical pattern recognition. We retrospectively divided patients with major depressive disorder into antidepressant responder and non-responder groups. Comprehensive gene expression analysis was performed using peripheral blood without narrowing the genes. We designed a classifier according to our own discrete Bayes decision rule that can handle categorical data. Nineteen genes showed differential expression in the antidepressant non-responder group (n = 15) compared to the antidepressant responder group (n = 15). In the training sample of 30 individuals, eight candidate genes had significantly altered expression according to quantitative real-time polymerase chain reaction. The expression of these genes was examined in an independent test sample of antidepressant responders (n = 22) and non-responders (n = 12). Using the discrete Bayes classifier with the HERC5, IFI6, and IFI44 genes identified in the training set yielded 85% discrimination accuracy for antidepressant responsiveness in the 34 test samples. Pathway analysis of the RNA sequencing data for antidepressant responsiveness identified that hypercytokinemia- and interferon-related genes were increased in non-responders. Disease and biofunction analysis identified changes in genes related to inflammatory and infectious diseases, including coronavirus disease. These results strongly suggest an association between antidepressant responsiveness and inflammation, which may be useful for future treatment strategies for depression.
UR - http://www.scopus.com/inward/record.url?scp=85147377546&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147377546&partnerID=8YFLogxK
U2 - 10.1016/j.heliyon.2023.e13059
DO - 10.1016/j.heliyon.2023.e13059
M3 - Article
AN - SCOPUS:85147377546
SN - 2405-8440
VL - 9
JO - Heliyon
JF - Heliyon
IS - 1
M1 - e13059
ER -