Integrated proteomics identifies p62-dependent selective autophagy of the supramolecular vault complex

Reo Kurusu, Yuki Fujimoto, Hideaki Morishita, Daisuke Noshiro, Shuhei Takada, Koji Yamano, Hideaki Tanaka, Ritsuko Arai, Shun Kageyama, Tomoko Funakoshi, Satoko Komatsu-Hirota, Hikari Taka, Saiko Kazuno, Yoshiki Miura, Masato Koike, Toshifumi Wakai, Satoshi Waguri, Nobuo N. Noda, Masaaki Komatsu

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

In addition to membranous organelles, autophagy selectively degrades biomolecular condensates, in particular p62/SQSTM1 bodies, to prevent diseases including cancer. Evidence is growing regarding the mechanisms by which autophagy degrades p62 bodies, but little is known about their constituents. Here, we established a fluorescence-activated-particle-sorting-based purification method for p62 bodies using human cell lines and determined their constituents by mass spectrometry. Combined with mass spectrometry of selective-autophagy-defective mouse tissues, we identified vault, a large supramolecular complex, as a cargo within p62 bodies. Mechanistically, major vault protein directly interacts with NBR1, a p62-interacting protein, to recruit vault into p62 bodies for efficient degradation. This process, named vault-phagy, regulates homeostatic vault levels in vivo, and its impairment may be associated with non-alcoholic-steatohepatitis-derived hepatocellular carcinoma. Our study provides an approach to identifying phase-separation-mediated selective autophagy cargoes, expanding our understanding of the role of phase separation in proteostasis.

Original languageEnglish
Pages (from-to)1189-1205.e11
JournalDevelopmental Cell
Volume58
Issue number13
DOIs
Publication statusPublished - Jul 10 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • General Biochemistry,Genetics and Molecular Biology
  • Developmental Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Integrated proteomics identifies p62-dependent selective autophagy of the supramolecular vault complex'. Together they form a unique fingerprint.

Cite this