TY - JOUR
T1 - Insights into the micromechanical properties of the metaphase spindle
AU - Shimamoto, Yuta
AU - Maeda, Yusuke T.
AU - Ishiwata, Shin'Ichi
AU - Libchaber, Albert J.
AU - Kapoor, Tarun M.
N1 - Funding Information:
T.M.K. acknowledges support from the National Institutes of Health/National Institute of General Medical Sciences (GM065933). We also thank the Uehara memorial foundation (Y.S.) and the Japan Society for the Promotion of Science (Y.S. and Y.T.M.).
PY - 2011/6/24
Y1 - 2011/6/24
N2 - The microtubule-based metaphase spindle is subjected to forces that act in diverse orientations and over a wide range of timescales. Currently, we cannot explain how this dynamic structure generates and responds to forces while maintaining overall stability, as we have a poor understanding of its micromechanical properties. Here, we combine the use of force-calibrated needles, high-resolution microscopy, and biochemical perturbations to analyze the vertebrate metaphase spindle's timescale- and orientation-dependent viscoelastic properties. We find that spindle viscosity depends on microtubule crosslinking and density. Spindle elasticity can be linked to kinetochore and nonkinetochore microtubule rigidity, and also to spindle pole organization by kinesin-5 and dynein. These data suggest a quantitative model for the micromechanics of this cytoskeletal architecture and provide insight into how structural and functional stability is maintained in the face of forces, such as those that control spindle size and position, and can result from deformations associated with chromosome movement. PaperFlick:
AB - The microtubule-based metaphase spindle is subjected to forces that act in diverse orientations and over a wide range of timescales. Currently, we cannot explain how this dynamic structure generates and responds to forces while maintaining overall stability, as we have a poor understanding of its micromechanical properties. Here, we combine the use of force-calibrated needles, high-resolution microscopy, and biochemical perturbations to analyze the vertebrate metaphase spindle's timescale- and orientation-dependent viscoelastic properties. We find that spindle viscosity depends on microtubule crosslinking and density. Spindle elasticity can be linked to kinetochore and nonkinetochore microtubule rigidity, and also to spindle pole organization by kinesin-5 and dynein. These data suggest a quantitative model for the micromechanics of this cytoskeletal architecture and provide insight into how structural and functional stability is maintained in the face of forces, such as those that control spindle size and position, and can result from deformations associated with chromosome movement. PaperFlick:
UR - http://www.scopus.com/inward/record.url?scp=79959644058&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79959644058&partnerID=8YFLogxK
U2 - 10.1016/j.cell.2011.05.038
DO - 10.1016/j.cell.2011.05.038
M3 - Article
C2 - 21703450
AN - SCOPUS:79959644058
SN - 0092-8674
VL - 145
SP - 1062
EP - 1074
JO - Cell
JF - Cell
IS - 7
ER -