TY - JOUR
T1 - Insight into the interaction between PriB and DnaT on bacterial DNA replication restart
T2 - Significance of the residues on PriB dimer interface and highly acidic region on DnaT
AU - Fujiyama, Saki
AU - Abe, Yoshito
AU - Shiroishi, Mitsunori
AU - Ikeda, Yohei
AU - Ueda, Tadashi
N1 - Copyright © 2019 Elsevier B.V. All rights reserved.
PY - 2019/1/16
Y1 - 2019/1/16
N2 - When the replisome collapses at a DNA damage site, a sequence-independent replication restart system is required. In Escherichia coli, PriA, PriB, and DnaT assemble in an orderly fashion at the stalled replication fork and achieve the reloading of the replisome. PriB-DnaT interaction is considered a significant step in the replication restart. In this study, we examined the contribution of the residues Ser20, His26 and Ser55, which are located on the PriB dimer interface. These residues are proximal to Glu39 and Arg44, which are important for PriB-DnaT interaction. Mutational analyses revealed that His26 and Ser20 of PriB are important for the interaction with DnaT, and that the Ser55 residue of PriB might have a role in negatively regulating the DnaT binding. These residues are involved in not only the interaction between PriB and DnaT but also the dissociation of single-stranded DNA (ssDNA) from the PriB-ssDNA complex due to DnaT binding. Moreover, NMR study indicates that the region Asp66-Glu76 on the linker between DnaT domains is involved in the interaction with wild-type PriB. These findings provide significant information about the molecular mechanism underlying replication restart in bacteria.
AB - When the replisome collapses at a DNA damage site, a sequence-independent replication restart system is required. In Escherichia coli, PriA, PriB, and DnaT assemble in an orderly fashion at the stalled replication fork and achieve the reloading of the replisome. PriB-DnaT interaction is considered a significant step in the replication restart. In this study, we examined the contribution of the residues Ser20, His26 and Ser55, which are located on the PriB dimer interface. These residues are proximal to Glu39 and Arg44, which are important for PriB-DnaT interaction. Mutational analyses revealed that His26 and Ser20 of PriB are important for the interaction with DnaT, and that the Ser55 residue of PriB might have a role in negatively regulating the DnaT binding. These residues are involved in not only the interaction between PriB and DnaT but also the dissociation of single-stranded DNA (ssDNA) from the PriB-ssDNA complex due to DnaT binding. Moreover, NMR study indicates that the region Asp66-Glu76 on the linker between DnaT domains is involved in the interaction with wild-type PriB. These findings provide significant information about the molecular mechanism underlying replication restart in bacteria.
U2 - 10.1016/j.bbapap.2019.01.008
DO - 10.1016/j.bbapap.2019.01.008
M3 - Article
C2 - 30659961
SN - 1570-9639
VL - 1867
SP - 367
EP - 375
JO - Biochimica et Biophysica Acta - Proteins and Proteomics
JF - Biochimica et Biophysica Acta - Proteins and Proteomics
IS - 4
ER -