TY - JOUR
T1 - Inhibition of protein kinase C/twist1 signaling augments anticancer effects of androgen deprivation and enzalutamide in prostate cancer
AU - Shiota, Masaki
AU - Yokomizo, Akira
AU - Takeuchi, Ario
AU - Imada, Kenjiro
AU - Kashiwagi, Eiji
AU - Song, Yoohyun
AU - Inokuchi, Junichi
AU - Tatsugami, Katsunori
AU - Uchiumi, Takeshi
AU - Naito, Seiji
PY - 2014
Y1 - 2014
N2 - Purpose: The progression of prostate cancer to metastatic and castration-resistant disease represents a critical step. We previously showed that the transcription factor Twist1, which promotes epithelial- mesenchymal transition, was involved in castration-resistant progression. Similarly, protein kinase C (PKC) has been implicated in both metastatic progression and castration resistance in prostate cancer. Experimental Design: In this study, we aimed to elucidate the role of PKC/Twist1 signaling in castration resistance, and to apply this information to the development of a novel therapeutic concept using PKC inhibitor Ro31-8220 against prostate cancer using various prostate cancer cell lines. Results: Androgen deprivation and the next-generation antiandrogen enzalutamide induced PKC activation and Twist1 expression, which were reversed by the PKC inhibitor Ro31-8220. Ro31-8220 suppressed cell proliferation in androgen-dependent prostate cancer LNCaP cells, which was augmented by its combination with androgen deprivation or enzalutamide. The favorable anticancer effects of the combination of Ro31-8220 and enzalutamide were also observed in castration-resistant C4-2 and 22Rv1 cells. Furthermore, PKC phosphorylation was elevated in castration-resistant and enzalutamide-resistant cells compared with their parental cells, leading to persistent sensitivity to Ro-31-8220 in castration- and enzalutamide-resistant cells. Conclusions: Taken together, these findings indicate that PKC/Twist1 signaling contributes to castration resistance as well as enzalutamide resistance in prostate cancer, and suggest that therapeutics targeting PKC/ Twist1 signaling, such as PKC inhibitors, represent a promising novel therapeutic strategy for prostate cancer, especially castration-resistant prostate cancer, when combined with enzalutamide.
AB - Purpose: The progression of prostate cancer to metastatic and castration-resistant disease represents a critical step. We previously showed that the transcription factor Twist1, which promotes epithelial- mesenchymal transition, was involved in castration-resistant progression. Similarly, protein kinase C (PKC) has been implicated in both metastatic progression and castration resistance in prostate cancer. Experimental Design: In this study, we aimed to elucidate the role of PKC/Twist1 signaling in castration resistance, and to apply this information to the development of a novel therapeutic concept using PKC inhibitor Ro31-8220 against prostate cancer using various prostate cancer cell lines. Results: Androgen deprivation and the next-generation antiandrogen enzalutamide induced PKC activation and Twist1 expression, which were reversed by the PKC inhibitor Ro31-8220. Ro31-8220 suppressed cell proliferation in androgen-dependent prostate cancer LNCaP cells, which was augmented by its combination with androgen deprivation or enzalutamide. The favorable anticancer effects of the combination of Ro31-8220 and enzalutamide were also observed in castration-resistant C4-2 and 22Rv1 cells. Furthermore, PKC phosphorylation was elevated in castration-resistant and enzalutamide-resistant cells compared with their parental cells, leading to persistent sensitivity to Ro-31-8220 in castration- and enzalutamide-resistant cells. Conclusions: Taken together, these findings indicate that PKC/Twist1 signaling contributes to castration resistance as well as enzalutamide resistance in prostate cancer, and suggest that therapeutics targeting PKC/ Twist1 signaling, such as PKC inhibitors, represent a promising novel therapeutic strategy for prostate cancer, especially castration-resistant prostate cancer, when combined with enzalutamide.
UR - http://www.scopus.com/inward/record.url?scp=84896712232&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896712232&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-13-1809
DO - 10.1158/1078-0432.CCR-13-1809
M3 - Article
C2 - 24352647
AN - SCOPUS:84896712232
SN - 1078-0432
VL - 20
SP - 951
EP - 961
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 4
ER -