TY - JOUR
T1 - Inhibition of adenosine monophosphate-activated protein kinase suppresses bone morphogenetic protein-2-induced mineralization of osteoblasts via smad-independent mechanisms
AU - Takeno, Ayumu
AU - Kanazawa, Ippei
AU - Notsu, Masakazu
AU - Tanaka, Ken Ichiro
AU - Sugimoto, Toshitsugu
N1 - Publisher Copyright:
© The Japan Endocrine Society.
PY - 2018
Y1 - 2018
N2 - Previous studies showed that adenosine monophosphate-activated protein kinase (AMPK), which plays as an intracellular energy sensor, promotes the differentiation and mineralization of osteoblasts via enhancing expression of bone morphogenetic protein (BMP)-2, which is a potent inducer of osteoblastogenesis. Thus, the aim of this study was to examine the roles of AMPK in BMP-2-induced osteoblastogenesis. We used a murine osteoblastic cell line MC3T3-E1 and a murine marrow stromal cell line ST2. BMP-2 (50 and 100 ng/mL) stimulated alkaline phosphatase (ALP) activity and enhanced mineralization of MC3T3-E1 cells, while the effects of BMP-2 were partly abolished by an inhibitor of AMPK, ara-A (0.1 mM). Real-time PCR showed that BMP-2 significantly increased the mRNA expressions of Alp, osteocalcin (Ocn), Runx2, Osterix and Dlx-5 in MC3T3-E1 cells, while co-incubation of ara-A significantly decreased the BMP-2-stimulated expression of Alp, Ocn, and Runx2. Moreover, co-incubation of ara-A suppressed the BMP-2-induced upregulation of Alp and Ocn in ST2 cells. Western blot analysis showed that BMP-2 phosphorylated Smad1/5 although it did not affect AMPK phosphorylation in MC3T3-E1 cells. Furthermore, a BMP receptor inhibitor LDN-193189 inhibited the phosphorylation of Smad1/5, but did not affect AMPK. In addition, co-incubation of ara-A did not affect BMP-2-induced phosphorylation of Smad1/5. These findings suggest that the inhibition of AMPK activation reduces the osteo-inductive effects of BMP-2 by decreasing the expression of Alp, Ocn, and Runx2 through Smad-independent mechanisms in osteoblastic cells.
AB - Previous studies showed that adenosine monophosphate-activated protein kinase (AMPK), which plays as an intracellular energy sensor, promotes the differentiation and mineralization of osteoblasts via enhancing expression of bone morphogenetic protein (BMP)-2, which is a potent inducer of osteoblastogenesis. Thus, the aim of this study was to examine the roles of AMPK in BMP-2-induced osteoblastogenesis. We used a murine osteoblastic cell line MC3T3-E1 and a murine marrow stromal cell line ST2. BMP-2 (50 and 100 ng/mL) stimulated alkaline phosphatase (ALP) activity and enhanced mineralization of MC3T3-E1 cells, while the effects of BMP-2 were partly abolished by an inhibitor of AMPK, ara-A (0.1 mM). Real-time PCR showed that BMP-2 significantly increased the mRNA expressions of Alp, osteocalcin (Ocn), Runx2, Osterix and Dlx-5 in MC3T3-E1 cells, while co-incubation of ara-A significantly decreased the BMP-2-stimulated expression of Alp, Ocn, and Runx2. Moreover, co-incubation of ara-A suppressed the BMP-2-induced upregulation of Alp and Ocn in ST2 cells. Western blot analysis showed that BMP-2 phosphorylated Smad1/5 although it did not affect AMPK phosphorylation in MC3T3-E1 cells. Furthermore, a BMP receptor inhibitor LDN-193189 inhibited the phosphorylation of Smad1/5, but did not affect AMPK. In addition, co-incubation of ara-A did not affect BMP-2-induced phosphorylation of Smad1/5. These findings suggest that the inhibition of AMPK activation reduces the osteo-inductive effects of BMP-2 by decreasing the expression of Alp, Ocn, and Runx2 through Smad-independent mechanisms in osteoblastic cells.
UR - http://www.scopus.com/inward/record.url?scp=85044441632&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044441632&partnerID=8YFLogxK
U2 - 10.1507/endocrj.EJ17-0229
DO - 10.1507/endocrj.EJ17-0229
M3 - Article
C2 - 29249772
AN - SCOPUS:85044441632
SN - 0918-8959
VL - 65
SP - 291
EP - 298
JO - Endocrine Journal
JF - Endocrine Journal
IS - 3
ER -