Abstract
Experiments were conducted to determine the influence of magnesium additions on grain refinement and tensile ductility in an Al-0.2% Sc alloy processed by equal-channel angular pressing (ECAP). The experiments show ECAP reduces the average grain size to within the range of ∼0.70 to ∼0.20 μm for alloys containing from 0 to 3% Mg but the as-pressed grain size increases to ∼0.3 μm in an alloy with 5% Mg because it is then necessary to use additional annealing treatments during the pressing process. The ultrafine grains introduced by ECAP are stable to high temperatures in the alloys containing from 0 to 3% Mg: in all alloys, the average grain size is <5 μm after annealing for 1 h at temperatures up to ∼750 K. High superplastic ductilities were achieved in the alloy containing 3% Mg but alloys containing 0.5% and 1% Mg exhibited the enhanced ductilities generally associated with conventional Al-Mg alloys. The results suggest the addition of ∼3% Mg is optimum for achieving superplastic elongations at rapid strain rates in the Al-0.2% Sc alloy.
Original language | English |
---|---|
Pages (from-to) | 3829-3838 |
Number of pages | 10 |
Journal | Acta Materialia |
Volume | 49 |
Issue number | 18 |
DOIs | |
Publication status | Published - Oct 26 2001 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Polymers and Plastics
- Metals and Alloys