Influence of liquid temperature and electrode size on insulated breakdown characteristics in saturated superfluid helium

Junya Suehiro, Takuji Takahashi, Motohide Miyama, Masanori Hara

Research output: Contribution to journalArticlepeer-review

Abstract

The dc breakdown strength and pulsed breakdown time lag of saturated superfluid liquid helium (HeII) at 1.4 and 1.85 K are measured over a wide range of electrode sizes and applied field strengths. The results of the measurements are statistically analyzed by using Weibull distribution functions. It is found that the area effect is dominant for dc and pulsed breakdown rather than the volume effect as in the case of liquid helium of 4.2 K (HeI). The shape parameter in the Weibull distribution function for dc breakdown strengths of HeII is smaller than that of HeI. As a result, dc breakdown in superfluid helium can take place in a wider electrode area than in normal liquid helium, while no remarkable differences in breakdown areas are observed between 1.85 and 1.4 K. On the other hand, the statistical time lag in HeII becomes shorter with a decrease in temperature. According to the Fowler-Nordheim theory, it is suggested that a higher electron mobility in HeII may increase the field-emitted electron kinetic energy to trigger liquid breakdown with a higher probability.

Original languageEnglish
Pages (from-to)16-23
Number of pages8
JournalElectrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)
Volume128
Issue number3
DOIs
Publication statusPublished - Aug 1999

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Influence of liquid temperature and electrode size on insulated breakdown characteristics in saturated superfluid helium'. Together they form a unique fingerprint.

Cite this