Abstract
This paper reports in-process detection of tool wear by using tool-work thermo-electromotive force (E.M.F.) as a sensor signal in face milling. In the case of using a single cutting edge, E.M.F. at the beginning of cut increased slowly corresponding to the width of tool flank wear. We assume this phenomenon is due to variations in electric resistance by increase of the contact area between the workpiece and the tool, so electric current between tool and workpiece was also detected. The variations of contact electric resistance calculated from both the E.M.F. and the electric current reveal that the electric resistance decreases as the tool flank wear progresses because contact areas between tool and workpiece increase. We developed a measurement system of variations of the contact resistance during face milling process. By monitorng the contact resistance using this system, the realtime detection of the width of tool fank wear can be achieved stably during cutting operations.
Original language | English |
---|---|
Publication status | Published - 2011 |
Event | 6th International Conference on Leading Edge Manufacturing in 21st Century, LEM 2011 - Omiya Sonic City, Saitama, Japan Duration: Nov 8 2011 → Nov 10 2011 |
Other
Other | 6th International Conference on Leading Edge Manufacturing in 21st Century, LEM 2011 |
---|---|
Country/Territory | Japan |
City | Omiya Sonic City, Saitama |
Period | 11/8/11 → 11/10/11 |
All Science Journal Classification (ASJC) codes
- Industrial and Manufacturing Engineering