TY - JOUR
T1 - Improving the overall performance of photochemical H2evolution catalyzed by the Co-NHC complexviathe redox tuning of electron relays
AU - Yatsuzuka, Koichi
AU - Yamauchi, Kosei
AU - Kawano, Ken
AU - Ozawa, Hironobu
AU - Sakai, Ken
N1 - Funding Information:
This work was supported by JSPS KAKENHI Grant Numbers JP18H01996, JP18K05150 and JP19K05502. This work was also supported by JSPS KAKENHI Grant Number JP18H05171 in Grants-in-Aid for Scientic Research on Innovative Area “Innovations for Light-Energy Conversion (I4LEC)”.
Funding Information:
This work was supported by JSPS KAKENHI Grant Numbers JP18H01996, JP18K05150 and JP19K05502. This work was also supported by JSPS KAKENHI Grant Number JP18H05171 in Grants-in-Aid for Scientific Research on Innovative Area ?Innovations for Light-Energy Conversion (I4LEC)?.
Publisher Copyright:
© The Royal Society of Chemistry 2021.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/2/7
Y1 - 2021/2/7
N2 - The catalytic performance of a photochemical H2evolution system made up of EDTA (ethylenediaminetetraacetic acid disodium salt), [Ru(bpy)3]2+(bpy = 2,2′-bipyridine) and a macrocyclicN-heterocyclic carbene cobalt (Co-NHC-1) catalyst has been examined at pH 5.0 (E(2H+/H2) = −0.54 Vvs.SCE) by using six electron relays (ERs) having different first reduction potentials (Ered) in the range −0.69 <Ered< −1.08 V. Compared to the photosystem using the conventional methylviologen (i.e.,N,N′-dimethyl-4,4′-bipyridinium;MV2+), the overall catalytic performance is dramatically improved by employing the ERs having the reduction potentials by 0.08-0.24 V more negative than that ofMV2+(Ered= −0.69 V), revealing that the overall rate is limited by the electron transfer (ET) from the one-electron reduced ER toCo-NHC-1, correlated to hydrogen evolution reaction (HER), rather than that from [Ru*(bpy)3]2+(triplet excited state) to ER, since the driving force for the HER (DFHER) predominates that for the ET from [Ru*(bpy)3]2+to ER (DFET). The optimum condition was realized by selecting one of the viologen derivatives with a medium reduction potential (N,N′,2,2′,6,6′-hexamethyl-4,4′-bipyridinium;tmMV2+;Ered= −0.85 V), leading to afford the initial rate of HER (55-57 μmol h−1) 70 times higher than that obtained by usingMV2+(0.79 μmol h−1). The stability of each one-electron reduced ER under the photolysis conditions has been also examined spectrophotometrically, clarifying that some ERs rather decompose rapidly upon reduction and cannot effectively participate in HER. This study successfully demonstrates for the first time that the overall catalytic performance of the present photosystem cannot be only controlled by the tuning of DFETand DFHERbut also be affected by the stability of the one-electron reduced form of ER.
AB - The catalytic performance of a photochemical H2evolution system made up of EDTA (ethylenediaminetetraacetic acid disodium salt), [Ru(bpy)3]2+(bpy = 2,2′-bipyridine) and a macrocyclicN-heterocyclic carbene cobalt (Co-NHC-1) catalyst has been examined at pH 5.0 (E(2H+/H2) = −0.54 Vvs.SCE) by using six electron relays (ERs) having different first reduction potentials (Ered) in the range −0.69 <Ered< −1.08 V. Compared to the photosystem using the conventional methylviologen (i.e.,N,N′-dimethyl-4,4′-bipyridinium;MV2+), the overall catalytic performance is dramatically improved by employing the ERs having the reduction potentials by 0.08-0.24 V more negative than that ofMV2+(Ered= −0.69 V), revealing that the overall rate is limited by the electron transfer (ET) from the one-electron reduced ER toCo-NHC-1, correlated to hydrogen evolution reaction (HER), rather than that from [Ru*(bpy)3]2+(triplet excited state) to ER, since the driving force for the HER (DFHER) predominates that for the ET from [Ru*(bpy)3]2+to ER (DFET). The optimum condition was realized by selecting one of the viologen derivatives with a medium reduction potential (N,N′,2,2′,6,6′-hexamethyl-4,4′-bipyridinium;tmMV2+;Ered= −0.85 V), leading to afford the initial rate of HER (55-57 μmol h−1) 70 times higher than that obtained by usingMV2+(0.79 μmol h−1). The stability of each one-electron reduced ER under the photolysis conditions has been also examined spectrophotometrically, clarifying that some ERs rather decompose rapidly upon reduction and cannot effectively participate in HER. This study successfully demonstrates for the first time that the overall catalytic performance of the present photosystem cannot be only controlled by the tuning of DFETand DFHERbut also be affected by the stability of the one-electron reduced form of ER.
UR - http://www.scopus.com/inward/record.url?scp=85100737973&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100737973&partnerID=8YFLogxK
U2 - 10.1039/d0se01597k
DO - 10.1039/d0se01597k
M3 - Article
AN - SCOPUS:85100737973
SN - 2398-4902
VL - 5
SP - 740
EP - 749
JO - Sustainable Energy and Fuels
JF - Sustainable Energy and Fuels
IS - 3
ER -