Improvement of the critical current density of alkaline water electrolysis based on the hydrodynamic similarity between boiling and water electrolysis

Xuesong Wei, Takumi Kakimoto, Yutaro Umehara, Hironori Nakajima, Kohei Ito, Hiromitsu Inagaki, Shoji Mori

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Since water electrolysis is a pollution-free and economical method to produce hydrogen which has a great potential as an energy carrier, it is imperative to improve the performance of water electrolysis for efficient hydrogen production. Supposing that the analogy between boiling and water electrolysis holds, the next interesting question is whether the water electrolysis performance can also be significantly improved by using a method that improves the heat transfer coefficient and the critical heat flux (CHF). The critical current density (CCD), which is the upper operation limit of water electrolysis, is considered to be one of the keys for effective hydrogen generation. However, the study on the enhancement of CCD has rarely been conducted. It is known that the boiling CHF can be improved by a honeycomb porous plate (HPP) due to two effects, capillary force and path separation of gas-liquid. In this work, we applied a cooling method using an HPP which has succeeded in improving the boiling CHF to alkaline water electrolysis. For the first time, we have succeeded in improving the CCD to approximately 1.3 times (CCD: 6.6 A/cm2) compared to without capillary force case (CCD: 5.1 A/cm2). As regards the mechanism, the effect of the liquid supply by capillary action and the improvement of the bubble discharge by separating the gas–liquid flow path using the honeycomb structure of the HPP play an important role in increasing the CCD.

Original languageEnglish
Article number124420
JournalInternational Journal of Heat and Mass Transfer
Volume214
DOIs
Publication statusPublished - Nov 1 2023

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Improvement of the critical current density of alkaline water electrolysis based on the hydrodynamic similarity between boiling and water electrolysis'. Together they form a unique fingerprint.

Cite this