Improvement of biocompatibility of chitosan fiber modified by ca-phosphate deposition through an alternate soaking process

Tomohiko Yoshioka, Hiroshi Onomoto, Haruhiko Kashiwazaki, Nobuo Inoue, Yoshihisa Koyama, Kazuo Takakuda, Junzo Tanaka

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

A tube consisted of chitin/chitosan nanofibers is one of the candidates to support nerve regeneration. However, chitin/chitosan would cause inflammation when implanted in human body. This study indicates that chitosan nanofibers (degree of deacetylation; 78% and 93%) could be modified by alternate soaking in calcium and phosphate solutions, resulting in the improvement of their biocompatibility in terms of both in vitro cell culture experiment and in vivo animal test. Deacetylation of the chitosan nanofibers appeared to have little effect on in vitro and in vivo behaviors after 3 days. However, the alternate soaking process clearly improved in vitro and in vivo responses against the chitosan nanofibers. During the process, the surface morphology of the chitosan nanofiber was not changed, i.e. no hydroxyapatite was deposited due to the limited number of soaking. Thus, the surface chemical and physical states of the modified chitosan nanofiber such as surface charge, surface free-energy, and wettability was found to influence both the cell attachment and inflammation.

Original languageEnglish
Pages (from-to)1269-1272
Number of pages4
JournalMaterials Transactions
Volume50
Issue number6
DOIs
Publication statusPublished - Jun 2009
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Improvement of biocompatibility of chitosan fiber modified by ca-phosphate deposition through an alternate soaking process'. Together they form a unique fingerprint.

Cite this