TY - CHAP
T1 - Impact of local topological information on random walks on finite graphs
AU - Ikeda, Satoshi
AU - Kubo, Izumi
AU - Okumoto, Norihiro
AU - Yamashita, Masafumi
PY - 2003
Y1 - 2003
N2 - It is just amazing that both of the mean hitting time and the cover time of a random walk on a finite graph, in which the vertex visited next is selected from the adjacent vertices at random with the same probability, are bounded by O(n3) for any undirected graph with order n, despite of the lack of global topological information. Thus a natural guess is that a better transition matrix is designable if more topological information is available. For any undirected connected graph G = (V, E), let P(β) = (puv(β))u,v∈V be a transition matrix defined by (Equation Presented) where β is a real number, N(u) is the set of vertices adjacent to a vertex u, deg(u) = |N(u)|, and U(·, ·) is a potential function defined as U(u, v) - log (max {deg(u), deg(v)}) for it u ∈ V, v ∈ N(u). In this paper, we show that for any undirected graph with order n, the cover time and the mean hitting time with respect to P(1) are bounded by O(n2log n) and O(n2), respectively. We further show that P(1) is best possible with respect to the mean hitting time, in the sense that the mean hitting time of a path graph of order n, with respect to any transition matrix, is Ω(n2).
AB - It is just amazing that both of the mean hitting time and the cover time of a random walk on a finite graph, in which the vertex visited next is selected from the adjacent vertices at random with the same probability, are bounded by O(n3) for any undirected graph with order n, despite of the lack of global topological information. Thus a natural guess is that a better transition matrix is designable if more topological information is available. For any undirected connected graph G = (V, E), let P(β) = (puv(β))u,v∈V be a transition matrix defined by (Equation Presented) where β is a real number, N(u) is the set of vertices adjacent to a vertex u, deg(u) = |N(u)|, and U(·, ·) is a potential function defined as U(u, v) - log (max {deg(u), deg(v)}) for it u ∈ V, v ∈ N(u). In this paper, we show that for any undirected graph with order n, the cover time and the mean hitting time with respect to P(1) are bounded by O(n2log n) and O(n2), respectively. We further show that P(1) is best possible with respect to the mean hitting time, in the sense that the mean hitting time of a path graph of order n, with respect to any transition matrix, is Ω(n2).
UR - http://www.scopus.com/inward/record.url?scp=35248892347&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35248892347&partnerID=8YFLogxK
U2 - 10.1007/3-540-45061-0_81
DO - 10.1007/3-540-45061-0_81
M3 - Chapter
AN - SCOPUS:35248892347
SN - 3540404937
SN - 9783540404934
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 1054
EP - 1067
BT - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
A2 - Baeten, Jos C. M.
A2 - Lenstra, Jan Karel
A2 - Parrow, Joachim
A2 - Woeginger, Gerhard J.
PB - Springer Verlag
ER -