Impact of Laser-Induced Graphitization on Diamond Schottky Barrier Diodes

Tomoki Iwao, Phongsaphak Sittimart, Tsuyoshi Yoshitake, Hitoshi Umezawa, Shinya Ohmagari

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Pseudovertical Schottky barrier diodes (SBDs) are fabricated on a single-crystal diamond substrate. Herein, the structural and electrical influence of laser-induced graphitization which takes place during the laser-dicing process is investigated. Before laser irradiation, the fabricated SBDs show a high rectifying ratio of more than 11 orders at ±10 V and undetectable leakage current. Ideality factor (n) and Schottky barrier height (ϕ b) are estimated to be 1.09 and 1.35 eV, respectively. After laser irradiation, the SBDs still exhibit good diode behavior, in which n and ϕ b values slightly change by 10%. Leakage current is increased about two orders of magnitude and breakdown voltage is degraded from 940 to 375 V due to the presence of graphite debris. After removing the graphite debris utilizing the oxygen plasma cleaning process through an inductively coupled plasma (ICP) system, all SBDs are recovered back to typical diode characteristics. It is found that strain and surface defects that may be introduced during laser dicing and post-ICP etching do not severely influence SBD characteristics.

Original languageEnglish
Article number2100846
JournalPhysica Status Solidi (A) Applications and Materials Science
Issue number20
Publication statusPublished - Oct 2022

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering
  • Surfaces and Interfaces


Dive into the research topics of 'Impact of Laser-Induced Graphitization on Diamond Schottky Barrier Diodes'. Together they form a unique fingerprint.

Cite this