TY - JOUR
T1 - Immune impairment in HIV infection
T2 - Existence of risky and immunodeficiency thresholds
AU - Iwami, Shingo
AU - Miura, Tomoyuki
AU - Nakaoka, Shinji
AU - Takeuchi, Yasuhiro
N1 - Funding Information:
The authors express their appreciation to Prof. X. Liu and Prof. W. Wang for valuable comments. We would also like to thank anonymous referees for very helpful suggestions and comments, which have improved the quality of our study. S. Iwami was supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists. S. Nakaoka was supported by (i) Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists and (ii) the Sasakawa Scientific Research Grant from The Japan Science Society.
PY - 2009/10/21
Y1 - 2009/10/21
N2 - Results of several studies show that some DC populations are susceptible to HIV. Modulation of DCs by HIV infection, in particular interference of the antigen-presenting function of DCs, is a key aspect in viral pathogenesis and contributes to viral evasion from immunity because the loss of the DC function engenders some impairment effects for a proliferation of CTL responses, which play an important role in the immune response to HIV. As described herein, we use a simple mathematical model to examine virus-immune dynamics over the course of HIV infection in the context of the immune impairment effects. A decrease of the DC number and function during the course of HIV-1 infection is observed. Therefore, we simply assumed that the immune impairment rate increases over the HIV infection. Under the assumption, four processes of the disease progression dynamics of our model are classifiable according to their virological properties. It is particularly interesting a typical disease progression presents a "risky threshold" and an "immunodeficiency threshold". Regarding the former, the immune system might collapse when the impairment rate of HIV exceeds a threshold value (which corresponds to a transcritical bifurcation point). For the latter, the immune system always collapses when the impairment rate exceeds the value (which corresponds to a saddle-node bifurcation point). To test our theoretical framework, we investigate the existence and distribution of these thresholds in 10 patients.
AB - Results of several studies show that some DC populations are susceptible to HIV. Modulation of DCs by HIV infection, in particular interference of the antigen-presenting function of DCs, is a key aspect in viral pathogenesis and contributes to viral evasion from immunity because the loss of the DC function engenders some impairment effects for a proliferation of CTL responses, which play an important role in the immune response to HIV. As described herein, we use a simple mathematical model to examine virus-immune dynamics over the course of HIV infection in the context of the immune impairment effects. A decrease of the DC number and function during the course of HIV-1 infection is observed. Therefore, we simply assumed that the immune impairment rate increases over the HIV infection. Under the assumption, four processes of the disease progression dynamics of our model are classifiable according to their virological properties. It is particularly interesting a typical disease progression presents a "risky threshold" and an "immunodeficiency threshold". Regarding the former, the immune system might collapse when the impairment rate of HIV exceeds a threshold value (which corresponds to a transcritical bifurcation point). For the latter, the immune system always collapses when the impairment rate exceeds the value (which corresponds to a saddle-node bifurcation point). To test our theoretical framework, we investigate the existence and distribution of these thresholds in 10 patients.
UR - http://www.scopus.com/inward/record.url?scp=70049095281&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70049095281&partnerID=8YFLogxK
U2 - 10.1016/j.jtbi.2009.06.023
DO - 10.1016/j.jtbi.2009.06.023
M3 - Article
C2 - 19577579
AN - SCOPUS:70049095281
SN - 0022-5193
VL - 260
SP - 490
EP - 501
JO - Journal of Theoretical Biology
JF - Journal of Theoretical Biology
IS - 4
ER -