TY - JOUR
T1 - Imbalance between cysteine proteases and inhibitors in a baboon model of bronchopulmonary dysplasia
AU - Altiok, Ozden
AU - Yasumatsu, Ryuji
AU - Bingol-Karakoc, Gulbin
AU - Riese, Richard J.
AU - Stahlman, Mildred T.
AU - Dwyer, William
AU - Pierce, Richard A.
AU - Bromme, Dieter
AU - Weber, Ekkehard
AU - Cataltepe, Sule
PY - 2006/2/1
Y1 - 2006/2/1
N2 - Rationale: Bronchopulmonary dysplasia (BPD) continues to be a major morbidity in preterm infants. The lung pathology in BPD is characterized by impaired alveolar and capillary development. An imbalance between proteases and protease inhibitors in association with changes in lung elastic fibers has been implicated in the pathogenesis of BPD. Objective: To investigate the expression and activity levels of papain-like lysosomal cysteine proteases, cathepsins B, H, K, L, S, and their inhibitors, cystatins B and C, in a baboon model of BPD. Methods: Real-time reverse transcriptase-polymerase chain reaction, immunohistochemistry, immunoblotting, active site labeling of cysteine proteases, and in situ hybridization were performed. Measurements and Main Results: The steady-state mRNA and protein levels of all cathepsins were significantly increased in the lung tissue of baboons with BPD. In contrast, the steady-state mRNA and protein levels of two major cysteine protease inhibitors, cystatin B and C, were unchanged. Correlating with these alterations, the activity of cysteine proteases in lung tissue homogenates and bronchoalveolar lavage fluid was significantly higher in the BPD group. The levels of cathepsin B, H, and S increased and cathepsin K decreased with advancing gestation. All cathepsins, except for cat K, were immunolocalized to macrophages in BPD. In addition, cathepsin H and cystatin B were colocalized in type 2 alveolar epithelial cells. Cathepsin L was detected in some bronchial epithelial, endothelial, and interstitial cells. Cathepsin K was localized to some perivascular cells by in situ hybridization. Conclusions: Cumulatively, these findings demonstrate an imbalance between cysteine proteases and their inhibitors in BPD.
AB - Rationale: Bronchopulmonary dysplasia (BPD) continues to be a major morbidity in preterm infants. The lung pathology in BPD is characterized by impaired alveolar and capillary development. An imbalance between proteases and protease inhibitors in association with changes in lung elastic fibers has been implicated in the pathogenesis of BPD. Objective: To investigate the expression and activity levels of papain-like lysosomal cysteine proteases, cathepsins B, H, K, L, S, and their inhibitors, cystatins B and C, in a baboon model of BPD. Methods: Real-time reverse transcriptase-polymerase chain reaction, immunohistochemistry, immunoblotting, active site labeling of cysteine proteases, and in situ hybridization were performed. Measurements and Main Results: The steady-state mRNA and protein levels of all cathepsins were significantly increased in the lung tissue of baboons with BPD. In contrast, the steady-state mRNA and protein levels of two major cysteine protease inhibitors, cystatin B and C, were unchanged. Correlating with these alterations, the activity of cysteine proteases in lung tissue homogenates and bronchoalveolar lavage fluid was significantly higher in the BPD group. The levels of cathepsin B, H, and S increased and cathepsin K decreased with advancing gestation. All cathepsins, except for cat K, were immunolocalized to macrophages in BPD. In addition, cathepsin H and cystatin B were colocalized in type 2 alveolar epithelial cells. Cathepsin L was detected in some bronchial epithelial, endothelial, and interstitial cells. Cathepsin K was localized to some perivascular cells by in situ hybridization. Conclusions: Cumulatively, these findings demonstrate an imbalance between cysteine proteases and their inhibitors in BPD.
UR - http://www.scopus.com/inward/record.url?scp=32144447426&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=32144447426&partnerID=8YFLogxK
U2 - 10.1164/rccm.200503-425OC
DO - 10.1164/rccm.200503-425OC
M3 - Article
C2 - 16166622
AN - SCOPUS:32144447426
SN - 1073-449X
VL - 173
SP - 318
EP - 326
JO - American Journal of Respiratory and Critical Care Medicine
JF - American Journal of Respiratory and Critical Care Medicine
IS - 3
ER -