Imaging local brain activity of multiple freely moving mice sharing the same environment

Shigenori Inagaki, Masakazu Agetsuma, Shinya Ohara, Toshio Iijima, Hideo Yokota, Tetsuichi Wazawa, Yoshiyuki Arai, Takeharu Nagai

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

Electrophysiological field potential dynamics have been widely used to investigate brain functions and related psychiatric disorders. Considering recent demand for its applicability to freely moving subjects, especially for animals in a group and socially interacting with each other, here we propose a new method based on a bioluminescent voltage indicator LOTUS-V. Using our fiber-free recording method based on the LOTUS-V, we succeeded in capturing dynamic change of brain activity in freely moving mice. Because LOTUS-V is the ratiometric indicator, motion and head-angle artifacts were not significantly detected. Taking advantage of our method as a fiber-free system, we further succeeded in simultaneously recording from multiple independently-locomotive mice that were freely interacting with one another. Importantly, this enabled us to find that the primary visual cortex, a center of visual processing, was activated during the interaction of mice. This methodology may further facilitate a wide range of studies in neurobiology and psychiatry.

Original languageEnglish
Article number7460
JournalScientific reports
Volume9
Issue number1
DOIs
Publication statusPublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Imaging local brain activity of multiple freely moving mice sharing the same environment'. Together they form a unique fingerprint.

Cite this