Identification of hypothalamic arcuate nucleus-specific enhancer region of Kiss1 gene in mice

Teppei Goto, Junko Tomikawa, Kana Ikegami, Shiori Minabe, Hitomi Abe, Tatsuya Fukanuma, Takuya Imamura, Kenji Takase, Makoto Sanbo, Koichi Tomita, Masumi Hirabayashi, Kei Ichiro Maeda, Hiroko Tsukamura, Yoshihisa Uenoyama

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)


Pulsatile secretion of GnRH plays a pivotal role in follicular development via stimulating tonic gonadotropin secretion in mammals. Kisspeptin neurons, located in the arcuate nucleus (ARC), are considered to be an intrinsic source of the GnRH pulse generator. The present study aimed to determine ARC-specific enhancer(s) of the Kiss1 gene by an in vivo reporter assay. Three green fluorescent protein (GFP) reporter constructs (long, medium length, and short) were generated by insertion of GFP cDNA at the Kiss1 locus. Transgenic female mice bearing the long and mediumlength constructs showed apparent GFP signals in kisspeptin-immunoreactive cells in both the ARC and anteroventral periventricular nucleus, in which another population of kisspeptin neurons are located. On the other hand, transgenic mice bearing 5′-truncated short construct showed few GFP signals in the ARC kisspeptin-immunoreactive cells, whereas they showed colocalization of GFPand kisspeptin-immunoreactivities in the anteroventral periventricular nucleus. In addition, chromatin immunoprecipitation and chromosome conformation capture assays revealed recruitment of unoccupied estrogen receptor-α in the 5′-upstream region and intricate chromatin loop formation between the 5′-upstream and promoter regions of Kiss1 locus in the ARC. Taken together, the present results indicate that 5′-upstream region of Kiss1 locus plays a critical role in Kiss1 gene expression in an ARC-specific manner and that the recruitment of estrogen receptor-α and formation of a chromatin loop between the Kiss1 promoter and the 5′ enhancer region may be required for the induction of ARC-specific Kiss1 gene expression. These results suggest that the 5′-upstream region of Kiss1 locus functions as an enhancer for ARC Kiss1 gene expression in mice.

Original languageEnglish
Pages (from-to)121-129
Number of pages9
JournalMolecular Endocrinology
Issue number1
Publication statusPublished - Jan 1 2015

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Endocrinology


Dive into the research topics of 'Identification of hypothalamic arcuate nucleus-specific enhancer region of Kiss1 gene in mice'. Together they form a unique fingerprint.

Cite this