Identification and characterization of RBM44 as a novel intercellular bridge protein

Tokuko Iwamori, Yi Nan Lin, Lang Ma, Naoki Iwamori, Martin M. Matzuk

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)


Intercellular bridges are evolutionarily conserved structures that connect differentiating germ cells. We previously reported the identification of TEX14 as the first essential intercellular bridge protein, the demonstration that intercellular bridges are required for male fertility, and the finding that intercellular bridges utilize components of the cytokinesis machinery to form. Herein, we report the identification of RNA binding motif protein 44 (RBM44) as a novel germ cell intercellular bridge protein. RBM44 was identified by proteomic analysis after intercellular bridge enrichment using TEX14 as a marker protein. RBM44 is highly conserved between mouse and human and contains an RNA recognition motif of unknown function. RBM44 mRNA is enriched in testis, and immunofluorescence confirms that RBM44 is an intercellular bridge component. However, RBM44 only partially localizes to TEX14-positive intercellular bridges. RBM44 is expressed most highly in pachytene and secondary spermatocytes, but disappears abruptly in spermatids. We discovered that RBM44 interacts with itself and TEX14 using yeast two-hybrid, mammalian two-hybrid, and immunoprecipitation. To define the in vivo function of RBM44, we generated a targeted deletion of Rbm44 in mice. Rbm44 null male mice produce somewhat increased sperm, and show enhanced fertility of unknown etiology. Thus, although RBM44 localizes to intercellular bridges during meiosis, RBM44 is not required for fertility in contrast to TEX14.

Original languageEnglish
Article numbere17066
JournalPloS one
Issue number2
Publication statusPublished - 2011
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Biochemistry,Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General


Dive into the research topics of 'Identification and characterization of RBM44 as a novel intercellular bridge protein'. Together they form a unique fingerprint.

Cite this