Hyper-branched polymer for electro-optic applications

Xianqing Piao, Yuichi Mori, Xianmin Zhang, Shinichiro Inoue, Shiyoshi Yokoyama

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In the present work, the hyper-branched (HB) polymer is utilized as a host material to efficiently incorporate the nonlinear optical chromophore. The HB polymer and toluene diisocyanate (2, 4-TDI) formed 3-D networks, and the typical FTC or CF3-Ph-FTC chromophores were introduced to investigate the electro-optic activity (r33). At the same time, poling behavior of NLO chromophores in the traditional poly methyl methacrylate (PMMA) and Poly MMA-MOI side-chain polymers were also included in this work for comparison. For FTC doped composites, the r33 reached over 80 pm/V in 3-D network matrix, while the value of r33 maximized at about 45 pm/V in traditional PMMA host and 70 pm/V in side-chain polymers. In addition, the measurement of poling process, poling efficiency, and thermal stability for the real application were also investigated.

Original languageEnglish
Title of host publicationOrganic Photonic Materials and Devices XII
DOIs
Publication statusPublished - 2010
EventOrganic Photonic Materials and Devices XII - San Francisco, CA, United States
Duration: Jan 26 2010Jan 28 2010

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume7599
ISSN (Print)0277-786X

Other

OtherOrganic Photonic Materials and Devices XII
Country/TerritoryUnited States
CitySan Francisco, CA
Period1/26/101/28/10

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Hyper-branched polymer for electro-optic applications'. Together they form a unique fingerprint.

Cite this