Hydrogen-assisted fatigue crack propagation in a commercially pure BCC iron

Domas Birenis, Yuhei Ogawa, Hisao Matsunaga, Osamu Takakuwa, Øystein Prytz, Junichiro Yamabe, Annett Thøgersen

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Hydrogen effect on fatigue performance of commercially pure BCC iron has been studied with a combination of various electron microscopy techniques. The fatigue crack growth (FCG) in gaseous hydrogen was found to consist of two regimes corresponding to a slightly accelerated regime at relatively low stress intensity factor range, ΔK, (Stage I) and the highly accelerated regime at relatively high ΔK (Stage II). These regimes were manifested by the intergranular and quasi-cleavage types of fractures respectively. Scanning electron microscopy (SEM) observations demonstrated an increase in plastic deformation around the crack wake in the Stage I, but considerably lower amount of plasticity around the crack path in the Stage II. Transmission electron microscopy (TEM) results identified dislocation cell structure immediately beneath the fracture surface of the Stage I sample, and dislocation tangles in the Stage II sample corresponding to fracture at high and low plastic strain amplitudes respectively.

Original languageEnglish
Title of host publicationMaterials and Fabrication
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851685
Publication statusPublished - 2018
EventASME 2018 Pressure Vessels and Piping Conference, PVP 2018 - Prague, Czech Republic
Duration: Jul 15 2018Jul 20 2018

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
ISSN (Print)0277-027X


OtherASME 2018 Pressure Vessels and Piping Conference, PVP 2018
Country/TerritoryCzech Republic

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering


Dive into the research topics of 'Hydrogen-assisted fatigue crack propagation in a commercially pure BCC iron'. Together they form a unique fingerprint.

Cite this